Merkliste
Die Merkliste ist leer.
Der Warenkorb ist leer.
Kostenloser Versand möglich
Kostenloser Versand möglich
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Produktbeschreibung

As conventional memory technologies such as DRAM and Flash run into scaling challenges, architects and system designers are forced to look at alternative technologies for building future computer systems. This synthesis lecture begins by listing the requirements for a next generation memory technology and briefly surveys the landscape of novel non-volatile memories. Among these, Phase Change Memory (PCM) is emerging as a leading contender, and the authors discuss the material, device, and circuit advances underlying this exciting technology. The lecture then describes architectural solutions to enable PCM for main memories. Finally, the authors explore the impact of such byte-addressable non-volatile memories on future storage and system designs. Table of Contents: Next Generation Memory Technologies / Architecting PCM for Main Memories / Tolerating Slow Writes in PCM / Wear Leveling for Durability / Wear Leveling Under Adversarial Settings / Error Resilience in Phase Change Memories / Storage and System Design With Emerging Non-Volatile Memories
Weiterlesen

Details

Weitere ISBN/GTIN9783031017353
ProduktartE-Book
EinbandE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsdatum31.05.2022
Auflage1. Auflage
SpracheEnglisch
IllustrationenXIV, 122 p.
Artikel-Nr.10817816
KatalogVC
Datenquelle-Nr.3457343
Weitere Details

Reihe

Bewertungen

Autor/in

Dr. Moinuddin Qureshi is an Associate Professor at Georgia Institute of Technology. His research interest includes computer architecture,memory system design,and leveraging emerging technology for scalable and efficient systems. He was a Research Staff Member at IBM T.J. Watson Research Center from 2007 to 2011, where he contributed to caching algorithms of Power 7 processor and conducted research studies on emerging non-volatile memory technologies. He received his Ph.D. (2007) and M.S. (2003) from the University of Texas at Austin, and BE (2000) from Mumbai University. He has published more than a dozen papers in flagship architecture conferences and holds five US patents.
Dr. Sudhanva Gurumurthi is an Associate Professor in the Computer Science Department at the University of Virginia. He received a BE degree from the College of Engineering Guindy, Chennai, India in 2000 and his Ph.D. from Penn State in 2005, both in the field of Computer Science and Engineering.Sudhanva's research interests include memory and storage systems, processor fault tolerance, and data center architecture. He has served on the program and organizing committees of several top computer architecture and systems conferences including ISCA, ASPLOS, HPCA, FAST, and SIGMETRICS. He has been an Associate Editor-in-Chief for IEEE Computer Architecture Letters (CAL) and currently serves as an Associate Editor. Sudhanva has held research positions at IBM Research and Intel and has served as a faculty consultant for Intel. Sudhanva is a recipient of the NSF CAREER Award and has received several research awards from NSF, Intel, Google, and HP. He is a Senior Member of the IEEE and the ACM.

Dr. Bipin Rajendran is a Master Inventor and Research Staff Member at IBM T.J. Watson Research Center, engaged in exploratory research on non-volatile memories and neuromorphic computation. He has contributed to works that led to the most advanced multi-level demonstration in PCM (Nirschl et al, IEDM'07), universal metrics for reliability characterization of PCM (Rajendran et al, VLSI Technology Symposium '08), analytical model for PCM operation (Rajendran et al, IEDM '08) and PCM data retention models (Y.H Shih et al, IEDM '08). He has published more than 30 papers in peer reviewed journals and conferences and holds 20 US patents. He has served as a member of the Emerging Research Devices Working Group of the International Technology Roadmap for Semiconductors (ITRS) in 2010. He received a B.Tech degree (2000) from Indian Institute of Technology, Kharagpur and M.S (2003) and Ph.D (2006) in Electrical Engineering from Stanford University.

Weitere Produkte von Qureshi, Moinuddin K.

Weitere Produkte von Gurumurthi, Sudhanva

Schlagworte

VLB Haupt-Lesemotiv