o
50
g
—
g,

NS

GEOIN 0Ly SONT

)
50
=]
oy
—
o

As

(Rl 0L/ SONT

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4710

Chris W. George Zhiming Liu
Jim Woodcock (Eds.)

Domain Modeling and
the Duration Calculus

International Training School
Shanghai, China, September 17-21, 2007
Advanced Lectures

@ Springer

Volume Editors

Chris W. George

Zhiming Liu

United Nations University

International Institute for Software Technology
P.O.Box 3058, Macau SAR, China

E-mail: {cwg, z.liu} @iist.unu.edu

Jim Woodcock

University of York

Department of Computer Science
Heslington, York YO10 5DD, UK
E-mail: jim@cs.york.ac.uk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.3, D.2.11,D.2.4,D.2.2, F2.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74963-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74963-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12124022 06/3180 543210

Preface

This volume contains a record of the lectures given at the ICTAC Training
School on Domain Modelling and Duration Calculus, held during the 17th-21st
September 2007 in Shanghai. The School was organised by East China Normal
University, UNU-IIST, and the University of York as part of the celebrations
of the 70th birthdays of Dines Bjorner and Zhou Chaochen. There were two
associated events:

— Essays in Honour of Dines Bjgrner and Zhou Chaochen on the Occasion of
their 70th Birthdays. Papers presented at a Symposium held in Macao on
24th & 25th September 2007. LNCS volume 4700. Springer 2007.

— Proceedings of the International Colloquium on Theoretical Aspects of Com-
puting. Held in Macao during 26th—28th September 2007. LNCS volume
4711. Springer 2007.

The school is aimed at postgraduate students, researchers, academics, and
industrial software engineers who are interested in the state of the art in these
topics. No previous knowledge of the topics involved is assumed. Two of the
courses are in the area of domain engineering (and in formal, abstract modelling
in general) and two are in the area of duration calculus; the fifth links the two
areas. The five courses are taught by experts in these fields from Europe and
Asia.

We are happy to acknowledge sponsorship from the following organisations:

China International Talent Exchange Foundation

East China Normal University

— United Nations University International Institute for Software Technology
University of York

The proceedings were managed and assembled using the EASYCHAIR conference
management system.

Contributors

ALAN BURNS is a professor of computer science at the University of York. His
research interests are in real-time systems, including the assessment of real-time
programming languages, distributed operating systems, the formal specification
of scheduling algorithms and implementation strategies, and the design of de-
pendable user interfaces to real-time applications.

DANG VAN HUNG is a research fellow of UNU-IIST. He received a doctoral-level
degree in computer science in 1988 from the Computer and Automation Research

VI Preface

Institute, Hungarian Academy of Sciences. His research interests include formal
techniques of programming, concurrent and distributed computing, and design
techniques for real-time systems.

CHRIS GEORGE is the Associate Director of the United Nations International
Institute for Software Technology (UNU-IIST) in Macao. He is one of the main
contributors to RAISE, particularly the RAISE method, and that remains his
main research interest. Before coming to UNU-IIST he worked for companies in
the UK and Denmark.

MICHAEL REICHHARDT HANSEN is an associate professor at the Technical Uni-
versity of Denmark. His research interests include duration calculus, interval
logic, and formal methods. He is one of the authors of the book Duration Cal-
culus with Zhou Chaochen.

CLIFF JONES was a professor at the University of Manchester, worked in indus-
try at Harlequin for a period, and is now a professor of computing science at
Newcastle University. He is Editor-in-Chief of the Formal Aspects of Computing
Journal. He undertook the DPhil at Oxford University Computing Laboratory
under Prof. Sir Tony Hoare FRS, awarded in 1981. He worked with Dines Bjgrner
and others on the Vienna Development Method (VDM) at IBM in Vienna. He
is a Fellow of the Royal Academy of Engineering.

Lecture Courses

Course 1: Delivering Real-Time Behaviour. This series of lectures is given
by Alan Burns, and it focuses on how to engineer systems so that they can meet
their timing requirements. Four separate, but related, issues are addressed.

1. A time band model that caters for the broad set of granularities found in a
typical complex system.

2. The delay and deadline statements that allow timing requirements to be
specified.

3. Scheduling analysis that enables a set of concurrent deadlines to be verified.

4. Timing analysis that enables sequential code to be inspected to determine
its worst case behaviour.

These four topics—together with a number of other techniques and tools de-
scribed in the course—allow real-time behaviour to be delivered.

Course 2: Applicative Modelling with RAISE. This course—given by
Chris George—provides an introduction to the RAISE Specification Language
and to the RAISE method. The course concentrates on the applicative style of
RAISE, the style most commonly used initially in development. It also describes
two examples. The first is a simple communication system that allows the trans-
mission of messages with the possibility of higher priority messages overtaking
others. The example illustrates the use of abstract initial specification to capture

Preface VII

vital properties, and of more detailed concrete specification to describe a model
having those properties. The second example is a control system of a lift and
illustrates the use of model checking to gain confidence in a RAISE model.

Course 3: A Theory of Duration Calculus with Application. This course
is given jointly by Dang Van Hung and Michael Hansen. It presents selected
central elements in the theory of the duration calculus and gives examples of
applications. The lectures cover syntax, semantics, and a proof system for the
basic logic. Results on decidability, undecidability, and model-checking are also
presented. Some extensions of the basic calculus are described; in particular,
hybrid duration calculus and duration calculus with iterations. The concepts are
illustrated by a case study: the bi-phase mark protocol. References are provided
for further study.

Course 4: Understanding Programming Language Concepts via Op-
erational Semantics. Cliff Jones’s lectures cover five topics.

1. History of Verification. This is based on his Annals of the History of
Computing paper [Jon03]; this lecture adds more on semantics.

2. Rely/Guarantee Method. The most accessible reference for this is [Jon96]
but the origins lie a long way back [Jon81,Jon83a,Jon83b] (see the exten-
sive list of publications on various forms of rely/guarantee conditions at
homepages.cs.ncl.ac.uk/cliff.jones/home.formal).

3. Deriving Specifications. This lecture is described in the accompanying
Festschrift volume [JHJO7]; there is an earlier conference paper [HJJ03]).

4. Semantics of Programming Languages. This lecture is published in this
volume. Chris George covers the idea of abstract modelling in general; Cliff
Jones focuses on the application of this idea to programming languages.

5. Soundness of Rely/Guarantee Proof Rules. This final lecture justifies
a set of proof rules like those introduced in Lecture 2 based on a semantics
like that in Lecture 4. The proof is published in [CJ07]. This material links
to “Refining Atomicity” [JLRW05,BJ05,Jon05,Jon07].

July 2007 J.C.P. W.

VIII Preface

References

[BJOS)

[CJ07]

[HJJ03]

[Jon81]

[Jon83a

[Jon83b]

[Jon96]

[Jon01]
[Jon03]

[Jon05]

[Jon07]

[JHJIO7]

[JLRW05]

Burton, J.I., Jones, C.B.: Investigating atomicity and observability. Jour-
nal of Universal Computer Science 11(5), 661-686 (2005)

Coleman, J.W., Jones, C.B.: Guaranteeing the soundness of
rely /guarantee rules (revised). Journal of Logic and Computation
(in press, 2007)

Hayes, 1., Jackson, M., Jones, C.: Determining the specification of a control
system from that of its environment. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 154-169. Springer, Heidelberg
(2003)

Jones, C.B.: Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University, June 1981 Printed
as: Programming Research Group, Technical Monograph 25 (1981)
Jones, C.B.: Specification and design of (parallel) programs. In: Proceed-
ings of IFIP 1983, pp. 321-332. North-Holland, Amsterdam (1983)
Jones, C.B.: Tentative steps toward a development method for interfer-
ing programs. ACM Transactions on Programming Languages and Sys-
tems 5(4), 596-619 (1983)

Jones, C.B.: Accommodating interference in the formal design of con-
current object-based programs. Formal Methods in System Design 8(2),
105-122 (1996)

Jones, C.B.: On the search for tractable ways of reasoning about programs.
Technical Report CS-TR-740, Newcastle University, Superceded by (2001)
Jones, C.B.: The early search for tractable ways of reasoning about pro-
grams. IEEE, Annals of the History of Computing 25(2), 26-49 (2003)
Jones, C.B.: An approach to splitting atoms safely. In: Electronic Notes
in Theoretical Computer Science, MFPS XXI, 21st Annual Conference of
Mathematical Foundations of Programming Semantics, pp. 35-52 (2005)
Jones, C.B.: Splitting atoms safely. Theoretical Computer Science 357,
109-119 (2007)

Jones, C., Hayes, 1., Jackson, M.A.: Specifying systems that connect to the
physical world. In: Essays in Honour of Dines Bjgrner and Zhou Chaochen
on the Occasion of the 70th Birthdays. Papers presented at a Symposium
held in Macao on 24th & 25th September 2007. LNCS, vol. 4700, Springer,
Heidelberg (2007)

Jones, C.B., Lomet, D., Romanovsky, A., Weikum, G.: The atomicity
manifesto (2005)

Coordinating Committee

Chris George
He Jifeng
Zhiming Liu
Geguang Pu
Jim Woodcock
Yong Zhou

UNU-IIST

East China Normal University
UNU-IIST

East China Normal University
University of York

East China Normal University

Table of Contents

Delivering Real-Time Behaviour 1
Alan Burns and Andy Wellings

Applicative Modelling with RAISE 51
Chris George

A Theory of Duration Calculus with Application..................... 119
Michael Reichhardt Hansen and Dang Van Hung

Understanding Programming Language Concepts Via Operational
SEMANTICS .« o v ottt e 177
Cli B. Jones

Author Index

Delivering Real-Time Behaviour

Alan Burns and Andy Wellings

Real-Time Systems Research Group
Department of Computer Science
University of York, UK
{burns, andy}@cs.york.ac.uk

Abstract. This paper focuses on how we can engineer systems so that they can
meet their timing requirements. Four separate, but related, issues are addressed:
a time band model that caters for the broad set of granularities found in a typ-
ical complex system, the delay and deadline statements that allow timing re-
quirements to be specified, scheduling analysis that enables a set of concurrent
deadlines to be verified and timing analysis that enables sequential code to be
inspected to determine its worst case behaviour. These four topics together with
a number of other techniques and tool described in the paper allow real-time be-
haviour to be delivered.

1 Introduction

In the construction of real-time systems it is vital to ensure that timing requirements
are satisfied by the system under development. To do this requires a number of differ-
ent techniques that must be integrated into an engineering process[[13]. In this paper
we support the rigorous verification of timing requirements by proposing an engineer-
ing process and populating it with existing/modified methods such as model checking,
schedulability analysis and timing analysis. The development of large computer-based
systems, with embedded components, imposes a number of significant challenges, both
technical and organisational. Their complexity makes all stages of their development
(requirements analysis, specification, design, implementation, deployment and mainte-
nance/evolution) subject to failure and costly re-working. Even the production of an
unambiguous behavioural description of an existing system is far from straightforward.

The process discussed here by which real-time behaviour is delivered comes from
the synergy of many existing methods and proposals. It is not entirely formal but is
strongly influenced by the need to engineer real systems with industrial strength tools
and methods. The key dimensions of the process are:

1. Time bands — to situate the proposed system in a finite set of distinct time scales.

2. Delay and Deadline Primitives — to capture timing requirements in each band.

3. Scheduling analysis — to manage the resources needed at each band to ensure the
system makes appropriate progress (i.e. meets its deadlines).

4. Timing analysis — to ensure activities defined within a single band have a bounded
resource requirement.

These four dimensions are supported by

C. George, Z. Liu, and J. Woodcock (Eds.): Domain Modeling, LNCS 4710, pp. 1 2007.
(© Springer-Verlag Berlin Heidelberg 2007

2 A. Burns and A. Wellings

— A modelling and verification formalism based on a restricted use of Timed Au-
tomata in which timing requirements within an automaton are represented by delay
and deadline conditions.

— A program model that utilises common pattern to implement the require behaviour
— typical patterns being periodic and sporadic processes, consumer/ producer rela-
tions and shared objects. The program model can be realised in languages such as

Spark [26]].

One characteristic of computer-based systems is that they are required to function at
many different time scales (from microseconds or less to hours or more). Time is clearly
a crucial notion in the specification (or behavioural description) of computer-based sys-
tems, but it is usually represented, in modeling schemes for example, as a single flat
physical phenomenon. Such an abstraction fails to support the structural properties of
the system, forces different temporal notions on to the same flat description, and fails
to support the separation of concerns that the different time scales of the system facili-
tate. Just as the functional properties of a system can be modeled at different levels of
abstraction or detail, so too should its temporal properties be representable in different,
but provably consistent, time scales.

To make better use of ‘time’, with the aim of producing more dependable embedded
systems, we propose a framework that explicitly identifies a number of distinct time
bands in which the system under study is situated [TTIT0]. Within each time band, tim-
ing requirements are represented by delay and deadline primitives. Delay ensures the
technical system does not ‘get ahead’ of its environment; deadlines ensure the system
does not get too far behind. The key role of the implementation (as well as obvious func-
tional correctness) is to satisfy the deadline constraints. To examine these constraints,
the sequential code must be amenable to timing analysis and the concurrent system
amenable to scheduling analysis.

The four dimensions identified above are addresses in the four main sections of this
paper. First, time bands are motivated and then described. Next timing requirements
within each bands are considered using delays and deadlines. Then schediling analy-
sis is outlined and finally a brief review of timing analysis is given. Conclusions are
provided in section[6l

2 Time Bands

The aim of this section of the paper is to motivate a modeling framework in which a
multi-banded representation of time is advocated. Much of this material is necessarily
focused on an informal description of the framework. A brief discussion on the formal-
isation of the framework in provided in a later section (Z2.8).

The framework enables the temporal properties of existing systems to be described
and the requirements for new or modified systems to be specified. The concept of time
band comes from the work of Newell in his attempts to describe human cogni-
tion. Newell focuses on hierarchical structures within the brain and notes that different
time scales are relevant to the different layers of his hierarchy. By contrast, we put the
notion of a time band at the centre of our framework. It can then be used within any

Delivering Real-Time Behaviour 3

organisational scheme or architectural form — for they all lead to systems that exhibit
a wide variety of dynamic behaviours.

2.1 Informal Description of the Framework

The domain of any large computer-based system exhibits dynamic behaviour on many
different levels. The computational components have circuits that have nanosecond
speeds, faster electronic subcomponents and slower functional units. Communication
on a fast bus is at the microsecond level but may be tens of milliseconds on slow or
wide-area media. Human time scales as described above move from the Ims neuron
firing time to simple cognitive actions that range from 100ms to 10 seconds or more.
Higher rational actions take minutes and even hours. At the organisational and social
level, time scales range from a few minutes, through days, months and even years. Per-
haps for some environmentally sensitive systems, consequences of failure may endure
for centuries. To move from nanoseconds to centuries requires a framework with con-
siderable descriptive and analytical power.

Most formulations that attempt to identify time granularity do so by mapping all
activities to the finest granularity in the system. This results in cumbersome formulae,
and fails to recognise the distinct role time is taking in the structuring of the system. An
exception is the work of Corsetti et al[21I16]; they identify “a finite set of disjoint and
differently grained temporal domains”. Their framework is not as extensive as the one
developed here, but they do show how the notion of temporal domains can be embedded
into a logical specification language. We are not aware of any other work that uses the
existence of distinct time scales as the basis of system modeling.

2.2 Definition of a Band

A band is represented by a granularity (expressed as a unit of time that has meaning
within the band) and a precision that is a measure of the accuracy of the time frame de-
fined by the band. The precision of a band defines the tolerance over the requirements
for two or more events to occur simultaneously. System activities are placed in some
band B if they engage in significant events at the time scale represented by B. They have
dynamics that give rise to changes that are observable or meaningful in band B’s gran-
ularity. So, for example, at the nanosecond band, gates are firing; at the 10 millisecond
band, human neural circuits are firing, significant computational functions are complet-
ing and an amount of data communication will occur. At the five minute band, work
shifts are changing, meetings are starting, etc. For any system there will be a highest
and lowest band that gives a temporal system boundary — although there will always
be the potential for larger and smaller bands. Note that at higher bands the physical
system boundary may well be extended to include wider (and slower) entities such as
legislative constraints or supply chain changes.

Time has both discrete and continuous characteristics within the framework. Both are
needed to capture the essential properties of complex systems; the term hybrid system is
often used to indicate this dual need. A time band defines a temporal frame of reference
(e.g., a clock that ticks at the granularity of the band) into which discrete actions can
easily be placed. But continuous entities can also be placed in this band if they exhibit
significant observable events on this time scale. For these entities, time is continuous

4 A. Burns and A. Wellings

but significant events occur at a frequency of no more than (but close to) once per ‘tick’
of the band’s abstract clock.

By definition, all activities within band B have similar dynamics. Within any mod-
eling framework there is considerable advantage in assuming that actions are instanta-
neous. They represent behaviours that are atomic; the combined behaviour of a number
of concurrent yet atomic actions is easy to assert as there is no interference between
behaviours. However in real-time embedded systems it is also necessary to consider the
real duration of actions. Within a band, activities have duration whilst events are instan-
taneous — “take no time in the band of interest”. Many activities will have a repetitive
cyclic behaviour with either a fixed periodicity or a varying pace. Other activities will
be event-triggered. Activities are performed by agents (human or technical). In some
bands all agents will be artificial, at others all human, and at others both will be evident.
The relationship between the human agent and the time band will obviously depend on
the band and will bring in studies from areas such as the psychology of time
and the sociology of time [39]. Embedded software will populate a number of bands,
the execution time of a single instruction will denote one band, the completion of dis-
tinct unit funtions are best described at another band, and complete schedulable tasks
will typically be mapped to yet another band.

In the specification of a system, an event may cause a response ‘immediately’ —
meaning that at this band the response is within the granularity of the band. This helps
eliminate the problem of over specifying requirements that is known to lead to imple-
mentation difficulties [33]]. For example, the requirement ‘when the fridge door opens
the light must come on immediately’ apparently give no scope for an implementation
to incorporate the necessary delays of switches, circuitry and the light’s own latency.
By making the term ‘immediate’ band specific, it enables a finer granularity band to
include the necessary delays, latencies and processing time that are needed to support
the immediate behaviour at the higher band.

Events that are instantaneous at band B map to activities that have duration at some
lower band with a finer granularity — we will denote this lower band as C. A key prop-
erty of a band is the precision it defines for its time scale. This allows two events to
be simultaneous (“‘at the same time”) in band B even if they are separated in time in
band C. This definition of precision enables the framework to be used effectively for
requirements specification. A temporal requirement such as a deadline is band-specific;
similarly the definition of a timing failure. For example, being one second late may be
a crucial failure in a computing device, whereas on a human scale being one second
late for a meeting is meaningless. The duration of an activity is also ‘imprecise’ (within
the band). Stating that a job will take three months is assumed to mean plus or minus a
couple of days. Of course the precision of band B can only be explored in a lower band.

From a focus on band B, two adjacent bands are identified. The slower (broader)
band (A) can be taken to be unchanging (constant) for most issues of concern to B (or
at least any activity in band A will only exhibit a single state change during any activity
within band B). At the other extreme, behaviours in (the finer) band C are assumed
to be instantaneous. The actual differences in granularity between A, B and C are not
precisely defined (and indeed may depend on the bands themselves) but will typically be
in the range 1/10th to 1/100th. When bands map on to hierarchies (structural or control)

