


Theodor Schneller · Rainer Waser
Marija Kosec · David Payne    Editors 

Chemical 
Solution 
Deposition of 
Functional Oxide 
Thin Films



Chemical Solution Deposition of Functional Oxide
Thin Films



ThiS is a FM Blank Page



Theodor Schneller • RainerWaser • Marija Kosec •
David Payne

Editors

Chemical Solution
Deposition of Functional
Oxide Thin Films



Editors
Theodor Schneller
Rainer Waser
RWTH Aachen University
Aachen
Germany

Marija Kosec
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Preface

Chemical solution deposition (CSD) has emerged as a mature technique for the

fabrication of functional oxide thin films due to a number of advantages. While the

development of sol–gel type CSD processes for optical coatings of glass dates from

the mid-twentieth century, the first chemical solution-deposited complex electronic

oxide thin films were prepared only as recently as the 1980s. Since the initial

studies, a wide variety of perovskite-related and other compounds on various

types of substrates have been prepared as thin films with CSD techniques. Substan-

tial progress in the understanding of the processes has been made which enables the

fabrication of device quality films by CSDmethods nowadays. Various symposia of

the Materials Research Society on solution-based materials fabrication, workshops,

and conferences have been held and a number of more or less comprehensive

review articles and book chapters have been published on this topic. The whole

diversification, however, is barely represented in the above-mentioned reviews and

a comprehensive textbook on the CSD technology has not been available up to now.

The aim of the book is to comprise the experience of the last 25 years on CSD of

mainly electroceramic thin films, with some extensions, as well as CSD-related

application areas into a text and reference book. The content is written on a level

that should be comprehensible for Material Science students in their third year. So,

all the basic chemistry and physics knowledge for typical Material Science

curricula should be present.

With the unexpected death of Prof. Fred Lange, author of Chap. 16, and Prof.

Marija Kosec, coeditor and coauthor of several book chapters, during the work on

this monograph, the community unfortunately lost two outstanding researcher

personalities. While Lange was a pioneer in growing epitaxial films by CSD

methods, Kosec’s CSD-related work was dedicated to the understanding of compli-

cated reactions during solution synthesis and how to control these reactions with

regard to ferroelectric thin film preparation. She was always enthusiastically pro-

moting the field of CSD processing in the materials science community. In this

sense she was also an avid supporter of the European Union’s program for Cooper-

ation in Science and Technology (COST).
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General Introduction

Chemical solution based preparation of inorganic solid state materials by sol–gel

processing dates back to the mid of the nineteenth century, where Ebelmen discov-

ered that silicon alkoxides react slowly with humidity (hydrolysis) to yield hydrated

silica (gel) [1–3]. Almost 100 years later, first works to use sol–gel processes for

modification of optical glasses was focused on SiO2 layers [4] followed by further

single oxide coatings, such as TiO2, ZrO2, Al2O3 etc., as well as multilayer coatings

[5–7]. Since the 1950s optical coatings on large planes of glass have been produced

in this way on an industrial scale [8, 9].

In the 1970s, optically transparent electrically conducting films were developed

by the Philips research laboratory Aachen for heat-reflecting filters [10, 11]. In the

1980s, the pioneering works of Fukushima and coworkers [12] on metallo-organic

decomposition (MOD) and of the Payne’s group [13, 14] on sol–gel processing of

lead zirconate titanate (PZT) thin films have been the first steps into ternary and

quaternary perovskites, demonstrating that complex electronic oxide thin films can

be fabricated by chemical solution deposition (CSD) reaching desired properties

similar to the corresponding bulk materials. Together with the excellent works of

Klee [15–18], Sayer [19, 20], Kosec [21–24], Sporn [25], Milne [26, 27], Schwartz

[28, 29], and others on wet chemical synthesis of materials [30], these studies gave

the impetus for a rapid international growth of this field with investigations in the

world on functional oxide thin film devices. This is reflected in a number of review

articles and single book chapters [31–47]. The main drivers for the research

progress were ferroelectric thin film materials for applications in different kinds

of memory devices, in particular ferroelectric nonvolatile memories—FERAM, as

well as piezoelectric sensors and actuators, pyroelectric detectors of infrared radia-

tion, and integrated high-permittivity (high-k) capacitors. Thus most of the reviews

focus on these materials. Meanwhile the CSD method was also successfully applied

in other fields of functional oxides such as conducting thin films, i.e., electron

conducting, ion conducting, and superconducting films, for applications in displays,

solid oxide fuels cells, and coated conductors.
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The present book summarizes the developments of the last 25–30 years in the

field of CSD. It covers all relevant aspects starting from the precursor chemistry via

the processing aspects up to examples for applications. A generalized flow chart

of the CSD procedure, the main body of which is subdivided into parts according to

the different processing steps, is shown in Fig. 1.

These “Parts” plus “Analytical Methods” represent the organization scheme of

the book which will be shortly summarized below.

Film fabrication by CSD typically begins with the solution synthesis in the

chemistry lab (Part I). The main precursors are salts, carboxylates, or other

metallo-organic compounds such as metal alkoxides and metal β-diketonates,
which can often be purchased commercially or synthesized in-house by common

chemical synthesis strategies.

By simple dissolution or refluxing them at elevated temperatures in appropriate

solvents, sometimes with intermediate distillation steps, and mixing in the correct

stoichiometric ratio, precursor solutions are obtained, which usually contain the

desired thin film stoichiometry. Often additives such as chemical stabilizers are

included during synthesis to adjust the properties of the final coating solution.

Under certain circumstances compositional corrections with respect to the exact

metal oxide stoichiometry are required. These comprise:

• Losses due to the volatility of a component (e.g., PbO)

• Losses due to component diffusion into the substrate (e.g., Bi loss from stron-

tium bismuth tantalate—SBT)

• Intentional off-stoichiometry for desired generation of secondary phases or

native point defects

Next, the coating solution is deposited by a number of methods (Part III). Spin-

and dip coating in various modifications are the by far most frequently applied

techniques. Aerosol deposition (often denoted as spray coating) and, more recently,

ink-jet printing are more sophisticated methods allowing for a more conformal

coating or structured coating with reduced material consumption. Subsequently, the

(wet) as-deposited film is dried, pyrolyzed,1 crystallized, and (optionally) post-

annealed for further densification or microstructure manipulation (Part IV). Often,

individual processing steps such as gel formation and organic removal cannot be

separated as implied in Fig. 1. The conversion of the wet, as-deposited film into the

desired crystalline film is induced through controlled thermal processes in the

temperature range from ~200 to 800 �C, which have to be adjusted to the character

1 The term “pyrolysis” is normally defined as the conversion of solid organic materials into gases

and liquids by indirect heat under exclusion of air, or oxygen, respectively. The material within the

reaction chamber is heated to temperatures between 400 and 800 �C. The pyrolysis process is

sometimes referred to as thermolysis. This is merely a preference in the choice of terminology.

Although the process reaction volatizes and decomposes solid organic materials by “heat,” the

Greek translation of “pyro” is “fire,” whereas “thermo” is more correctly, “heat.” Thus—

thermolysis. Hence in case of the CSD technology, the term pyrolysis is predominantly used to

describe the decomposition of the organic matrix in air or oxygen [34].
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Fig. 1 Flow chart of a typical CSD process. It shows schematically the different processing steps

starting with solution synthesis, followed by deposition and crystallization, and ending with

functional oxide thin film devices. Frequently applied analytical methods are shown on the right
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of the nucleation and growth behavior of the material under study. Typically hot

plates in combination with a conventional furnace or a rapid thermal annealing

(RTA) oven are employed for this transformation process. In specific cases, such as

temperature-sensitive substrates, the use of lasers for the annealing may be

indicated [48]. Depending on the specific CSD route and film deposition method,

numerous variations in thermal processing conditions are utilized. For example, if

the desired film thickness is not obtained in the first coating cycle, the deposition

and thermal process sequence are repeated to prepare thicker films. When the

desired film thickness is obtained, a final thermal treatment at a still higher

temperature may be employed to initiate crystallization, to improve microstructure,

or to increase film density.

As indicated by the double arrows in Fig. 1, the process can be monitored at

various stages by a number of analytical methods (Part II). X-ray diffraction (XRD)

and electron microscopy (scanning—SEM2 and transmission—TEM), well

established and often available in material science labs, are the standard methods

to characterize phase and morphology of pyrolyzed and crystallized films. To study

the solution chemistry and phase evolution, thermal analysis and Fourier transform

infrared spectroscopy (FTIR) are the most frequently applied methods. Moreover

X-ray absorption spectroscopy, although more sophisticated, is often employed

since it yields structural information from the precursors independent of the physi-

cal state, i.e., also from solutions and amorphous solids.

Finally oxide thin film devices, such as capacitors, piezoelectric actuators, or

conductors for various fields of applications can be fabricated from the crystallized

films (Part V).

In order to implement the CSD method for a thin film material system, a number

of general prerequisites for the precursor solutions, the substrates, and processing

itself have to be fulfilled in order to yield the desired results:

(a) Sufficient solubility of all educts in the solvent, i.e., formation of a stable 1-pot

coating solution

(b) Acceptable long-term stability of the precursor solution—reasonable minimum

times are about 1 month

(c) Selection of precursor systems that leaves solely the cations and oxygen present

upon pyrolysis and crystallization

(d) Adjusted solution rheology, i.e., modification of the solutions depending on the

applied coating technique to avoid failures such as striations in spin coating, or

sticking, and uncontrolled purging, respectively, of the precursor ink in the

nozzles of an inkjet printer

(e) Adequate wettability of the substrate.

(f) Homogeneity, ideally at an “atomic” level, should be retained during the whole

process, i.e., macroscopic phase separation of precursor components in the

solution, during drying or pyrolysis must not occur

2 Sometimes the term FESEM is used instead of SEM to indicate that the microscope works with a

field emission cathode.

x General Introduction



(g) Crack and compositional nonuniformity formation during thermal processing

have to be avoided

(h) Marginal interdiffusion of film and substrate constituents

(i) Minimal degradation of substrate properties during film processing.

If these requirements are fulfilled and if processing conditions are optimized, the

CSD technique represents a rapid and cost-effective method of synthesizing high

quality functional oxide thin films.

Organization of the Book

According to Fig. 1 the book is subdivided into the following five parts, which are

further subdivided into individual chapters:

• Part I—Solution Chemistry

• Part II—Analytical Methods

• Part III—Deposition Techniques

• Part IV—Processing and Crystallization

• Part V—Functions and Applications

Each “Part” starts with a short survey on the corresponding content. A comple-

mentary “Appendix” chapter containing practical recipes for CSD processing

concludes the book.

Aachen, Germany Theodor Schneller

Jülich, Germany Rainer Waser
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