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PREFACE

In recent years, computational contact mechanics has been a topic of intense
research. The aim of this research has been to devise robust solution schemes
and new discretization techniques for description of contact phenomena, which
can then be applied to a much broader range of engineering analysis areas than
is currently the case. Among the broad areas of emphasis have been finite de-
formation contact problems, consideration of higher order interpolations, special
algorithms for rolling contact, and discrete element problems for large scale anal-
ysis. The main focus of this book is to convey modern techniques applied within
the range of computational contact mechanics.

Topics of interest within the community are wide ranging, and include com-

putational aspects of

e spatial and temporal discretization techniques for contact and impact prob-
lems with small and finite deformations;

e investigations on the reliability of micromechanical contact models;

e cmerging techniques for rolling contact mechanics;

e homogenization methods and multi-scale approaches to frictionless and fric-
tional contact problems;

o solution algorithms for single- and multi-processor computing environments,
enabling methods that span from multi-contact to multi-scale approaches;
and

e numerical experiments related to soil mechanics using discontinuous defor-
mation analysis.

The different contributions in this book will cover the topics described above,
while providing some needed background with respect to continuum mechanics and
finite element methods. The focus will be a detailed treatment of the theoretical
formulation of contact problems with regard to mechanics and mathematics. Fur-
thermore, discretization schemes for two- and three-dimensional contact problems
of small and large deformations will be discussed. These schemes include novel
and innovative formulations for rolling contact applications relating to tire con-
tact and noise generation of rolling tires. Solution techniques related to contact
mechanics are also of interest; hence, solvers for large scale multi-contact prob-
lems will be discussed. This includes multi-scale contact related to quasistatic,
dynamic, structural and granular applications. Special attention is also given to
conjugate gradient algorithms and extensions. This will include domain decom-
position methods for structural problems, their application to cellular materials
and important homogenization techniques in micro-macro approaches to frictional



problems. Finally, a contribution will cover discrete element techniques for multi
body contact analysis and their applications to industrial problems.

All contributions are of a theoretical and applied nature, suitable for graduate
students of applied mathematics, mechanics, engineering and physics with interest
i computer simulation of contact problems.

P. Wriggers and T. A. Laursen
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Emerging Spatial and Temporal Discretization
Methods in Contact and Impact Mechanics

Tod A. Laursen

Computational Mechanics Laboratory
Department of Civil and Environmental Engineering
Duke University, Durham, NC 27708-0287, USA

Abstract The focus of this discussion will be the recent evolution of both spatial
and temporal discretization techniques in contact and impact mechanics. With
regard to spatial discretization, attention will be focused on the movement from
traditional “node to surface” methodologies for description of contact interaction,
to new “surface to surface” algorithms that in most cases have their motivation in
the mortar method. While an anticipated result of this evolution was the increased
numerical accuracy produced by integral forms of the contact constraints, it has also
been seen that considerable robustness in large sliding applications results from the
non-local character of the formulation. In this discussion both of these advantages
of the surface to surface framework will be demonstrated, as will recent extensions
that enable reliable simulation of self-contact phenomena.

When extending computational contact formulations to the transient regime,
the consideration of reliable time integrators for impact phenomena is of inter-
est. Accordingly, we examine some of the issues associated with time stepping
in semidiscrete formulations of contact/impact, with particular emphasis on the
energy-momentum paradigm as applied to impact mechanics. We consider a form
of the energy-momentum approach which encompasses dissipative phenomena (such
as inelasticity and friction), and focus on a numerical approach that allows for ve-
locity discontinuities to be incorporated into the contact updating scheme.

1 Problem Formulation

We begin by summarizing the equations governing the contact of solids, with extensive
consideration of the continuum formulation of large deformation contact as described in
such early sources as Laursen and Simo (1993) and Wriggers and Miehe (1994). We
will consider the unilateral contact constraints between two deformable bodies here, with
potential (Coulomb) frictional contact between them also encompassed by the framework.

We define open sets Q) € R™ 4 = {1,2},n,q = 2 or 3, to denote reference config-
urations of two bodies. They have boundaries 9Q(") which are individually subdivided
into non-intersecting regions Tl (Neumann boundary), Fg) (Dirichlet boundary), and

T (contact boundary), each invariant with time and satisfying

PO UT® UTO = 900, (1.1)
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Given a time interval I = [0, T], and appropriate spaces for admissible deformations goii)

and admissible variational functions g*o(z), the weak form of the dynamic contact problem
can be thus expressed for each body ():

Find <p§i) such that for all g*o(i):

. « (%) * 7 — *\ (2 s\ (2
((baVi= 1), &) +(DeSi, GRADIZN Y — (B @)y, = (6, &) . (1.2)

In (1.2) and throughout we make use of a shorthand description of integral products,
/ (o) (9)dR := (0,0)),  and / (o) (0)dI'™ := (o, 0)).  (13)
Q) INO)

Values in (1.2) include reference density, po; local material velocities, V; = ¢,; and a
representation of the second (symmetric) Piola-Kirchhoff stress, denoted S;. The contact
surface tractions (t;) are subject to a set of spatial geometric constraints dependent on
the unknown deformation mappings gogz).

The variational form in (1.2) is composed of integral virtual work expressions. Taking
the left hand side and summing over the contacting bodies ¢ gives the total virtual work

of the combined non-contact forces on the system:

G(S"ta‘»*o) = 22: K(pOVt - £, 82>(i)
i (1.4)

+(Dp,Se GRADE) - (0 )]

We use a standard Lagrangian description for the contact surfaces, designating the

material points as X € Ft(:l) and Y € 1“9, respectively. Contact points on 1“22) are often

mapped! from Fgl) through a closest point projection minimization

Y(X,t) = arg min [loi”(X) -} (V)] - (1.5)
Yerd

Summing the right hand side of (1.2) and establishing force balance (t() = —t(2) .= t)

along the shared contact surface ( I‘f;l) = I‘g) :=T.), yields a single integral expression
for the wirtual work of contact:

Gelorn ) = —(t. [p"V () P v (x.0) ) (1.6)

The contact problem is thus compactly stated in virtual work terms:

!Note that this means of identification of contact points will be revised when the mortar contact
framework is introduced
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Find <p,(5i), subject to the contact constraints, such that for all {ko(i):

Gy, @)+ Ge(py, ) =0 (1.7)

In defining the local contact conditions in the continuum problem, we may use (1.5)
to identify a unit direction vector v aligned with the contact surface normal, as well as
a gap function g, such that

o (X) - P (Y (X, 1) = —gv; (1.8)

and adopt the convention whereby v is directed outward of Q(2) such that the ‘gap’ is
negative (g < 0) for admissible (i.e. non-penetrated) deformations. Manipulation of
(1.8) defines a geometric description of the gap magnitude,

9= v (e"(X) - P (¥(X.1)). (1.9)

Following the approach given in Laursen and Simo (1993), we parameterize the pro-

jection contact surface (1“9) in reference variables £%, (o = 1,nsq — 1), and derive
nsq — 1 spatial vectors 7, through differentiation of (1.8) within this parameterization,
maintaining the closest-point minimization (indicated with the overbar notation) such
that

To =P, 4 (E(X 1) . (1.10)

The tangential vectors T, are orthogonal to the surface normal v, and are not in general
orthonormal. This requires consideration of the associated metric and its inverse,

Mg i=Tao T3 [mo‘ﬁ] = [mag] !, (1.11)
in order to define the dual basis,
7%= mry . (1.12)

(Note that here the summation convention is implied on repeated indices.) The con-
tact forces, t, can now be decomposed in terms of normal (¢y) and tangential (t7,,)
components, i.e.

t=tyv—tp, 7" (1.13)

Variations of the important surface quantities, namely the gap function g and the
projected surface parameterization £, can be generated as directional derivatives aligned
with deformation variation ¢. Consider

b9 =—v-[p(X) - (VY (X.1)) (1.14)

and

(2)

Aap 68 =75 10V (X) - P V(X )] +gv- -6V 5 (V(X.0)] . (1.15)
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where the symmetric matrix A, and its inverse A%? are defined as

Aug i=map+ v (67 0 (V(X,0)]  and  [A%F] = [Aap) 7L . (1.16)

Temporal derivatives (denoted with a superimposed dot) are calculated in the same
manner, yielding a local description for a gap rate, vy = g and local measures of relative
tangential motion, or slip rates, v3 = £% in terms of material velocities v = @Ei):

oy =g =—v- [VO(X) - V(Y (X,1), (1.17)
and

Aag v = Aap € = 75 [VI(X) = VOV (X, )] + gv- [V 5 (Y (X,1))] . (1.18)

The slip rates can then be used in the definition of a relative and frame indifferent slip
velocity as proposed in Laursen and Simo (1993). Although many choices of reference
frame are possible for posing of the frictional conditions, here we opt for a completely
spatial definition of the slip velocity through use of the spatial metric mqg. Consider the
definition

vy = vgn'g = magvgn'o‘. (1.19)

The descriptions in (1.14) and (1.15) are now combined with the contact force decom-
position (1.13) and substituted into the variational equation to restate the virtual work
of contact in terms of the surface variations,

Gy, &) = / [tn0g + tro0E%] dT. (1.20)
T

The equivalence of (1.6) and (1.20) rests upon a pair of complementarity conditions,
tng=0 and trog =0, (1.21)

which establish that the contact force magnitudes (non-zero only during contact) and
the gap functions ¢g (negative only when out of contact) cannot be mutually non-zero in
the continuum description. The dilitational components of the tangential variation (the
last term in each of (1.15) and (1.16)) can thus be considered as zero over the contact
surfaces, validating the virtual work description (1.20).

With the global virtual work expression established, we wish now to apply a standard
set of Kuhn-Tucker conditions in terms of the kinematic geometry, first in the normal
direction, which remains the same for both frictionless and frictional contact:

g<0
ty >0

tNQZO
tN’UN:O.

(1.22)
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In the event that frictional response is to be described, the contact conditions may be
generically introduced via the following well-known equations of evolution:

Cb(tT,tN) = [tTa’InaﬂtT[Jl/2 - ,utN S 0,

8 . lr,
Mgl = y———————
P = Vg mPrty, 12 (1.23)
7y =0,
40 =0

where p is the coefficient of friction.

2 Traditional Node-to-Surface Formulation of Contact

In developing a finite element representation of the system we have described, one begins

by considering cp(z)h and cp( ) , finite-dimensional counterparts of ¢ and cp( ). In par-

ik . . ~\h
ticular, :0(1) e V" ¢ V®  while cp(z)h, considered to be continuous in time, satisfies
the following for each time ¢:

o e el (2.1)

where Ct(z) and V) are the space of admissible configurations at time ¢ and the space
of admissible variations, respectively. Substitution of these finite dimensional quantities
into the global variational principle (1.7) gives a set of nonlinear ordinary differential
equations of the form

Md(t) + F™(d(t)) + F(d(t)) = F'(t), (2.2)

subject to initial conditions on d and d. In (2.2), M is the mass matrix, F™" is the
internal force vector, F° is the contact force vector, and F°**(t) is the external force
vector (consisting of known data). The vector d symbolically represents the solution
vector, or a vector of nodal values of the motion ¢". The manipulations necessary to
derive M, F™™ and F®'(t) from the virtual works of the contacting bodies have been
extensively treated in the literature and will not be examined here. In the semidiscrete
approach, approximate solutions to (2.2) are found by applying temporal integration
schemes, as will be discussed later. The quasistatic equivalent of (2.2) is formally obtained
by omission of the inertial term M d.

Equation (2.2) is in general highly nonlinear, mostly because of the terms F™(d)
and F°(d). The first of these, the internal force vector, often contains both geometric
and material nonlinearities, causing it to depend in a complex manner on d. The second,
the contact force vector, derives from expression (1.20) and has a form which depends
on the method of spatial discretization. We will focus on this topic in the remainder
of this section as well as the next. First we will consider node-to-surface methods for
approximation of contact interaction, and then in the next section, a more recent surface-
to-surface approach will be summarized.
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2.1 Contact Surface Discretization

An important attribute of the contact formulation we consider is that all development
depends only on the configurations and variations evaluated on the contact surfaces 1“&”,
and not on values in the interiors of the bodies. Thus, in considering the discretization

. * (7 -\ h
leading to specification of F°(d), only the restrictions of <p(z)h and go(z) to T need
to be considered. These restrictions are considered to be collections of local mappings
(denoted by superscript e’s), defined over individual element surfaces.

For example, go(l)he(n), with € AM°, is expressed as

Nnes

W () =Y Na(m)d(t) (2.3)
a=1

where dfll)(t) is a nodal value of ga(l)h, and npes is the number of nodes per element
surface. N,(n) denotes a standard Lagrangian shape function, defined on the biunit

square AV for three dimensional problems and on AV = [—1,1] for two dimensional

h
problems. The interpolation of g*a(l) is similarly conceived, via

Nnes

« (1 h€ o
&V )= Ne(melh, (2.4)
a=1

h
where cgl), a nodal value of {5(1) , is independent of time (and, owing to the arbitrary

« (1) . . . . . .
nature of <p( ) , will ultimately be argued to be arbitrary). Using the isoparametric
interpolation scheme, one also has:

Nnes

X" () =" Na(m)Xa. (2.5)
a=1

Analogues of (2.3)—(2.5) are assumed to hold for body (2); i.e.

he | mme 2.6
5" @)= 3 Me)e, (26)

and

Y™ (&) =) N(§)Yo, (2.7)

defined over element surface parent domains AP,
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e+1
pe—1 h (1)}7, sel

Fgl) Fgl)he Fgl)

Fgl)h

Figure 1. Division of the contact integral into subintegrals.

The contact virtual work in the discrete setting is now written, by substitution of the
above discrete fields into (1.20), as

—  h
Ge(h, ") = /F g 4t 5Ear, 2.8)

where all quantities in the integrand depend on the discrete fields as given previously for
the continuous case. As before, indices «, 3, 7, etc. run between 1 and ngg — 1 in (2.8)
and in all other expressions in this chapter.

2.2 Numerical Integration of the Contact Integral

We now summarize the manner in which the contact virtual work integral is approx-
imated in the traditional node-to-surface implementation. Dropping the subscript ¢’s to
reduce notation, (2.8) may be written as a sum of integrals over the n,.; element surfaces

of Fgl)h:
h Nsel *ah
=3 /P e [theBg" 8 €T (29)
e=1 c

where each subintegral of (2.9) is evaluated using quadrature. Figure 1 may be consulted
for a graphic illustration of this division into subintegrals.

Performing a change of variables to the parent domain (i.e., A(l)e) and applying an
appropriate quadrature rule gives

G(e", " Z { i W*j( n")og" (n") + t, (nk)&“o‘h(n’“)]}

e=1

_f{%wk 5@c fck}

(2.10)



