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The Rayleigh-Plesset equation: a simple and powerful tool 
to understand various aspects of cavitation. 

Jean-Pierre FRANC 

University of Grenoble, France 

Abstract. This chapter is a general introduction to cavitation. Various features of cavitating 
flows are analyzed on the basis of the Rayleigh-Plesset equation. They concern not only 
the simple configuration of a single spherical bubble but also complex cavitating flows as 
those observed in cavitating turbopumps. Scaling rules, erosive potential, thermodynamic 
effect, supercavitation, traveling bubble cavitation, cavitation modeling are some of the 
topics addressed here. They are examined through this simple, basic equation which proves 
to be a quite useful tool for a first approach of real cavitation problems. 

1 Introduction 

Cavitation is the development of vapor structures in an originally liquid flow. Contrary to boiling, 
the phase change takes place at almost constant temperature and is due to a local drop in pressure 
generated by the flow itself. 

The occurrence of low pressure regions in flows is a well-known phenomenon. For example, 
in the case of a Venturi, i.e. a converging duct followed by a diverging one, the velocity is maxi-
mum at the throat where the cross section is minimum. Then, according to Bernoulli equation, the 
pressure is minimum there and the risk of cavitation is maximum. 

Another example is the flow around a foil at a given angle of attack which is representative 
of that around the blades of a hydraulic machine. From classical hydrodynamics, it is well-known 
that the foil is subject to a lift because of a lower pressure on the suction side in comparison to the 
pressure side. Hence, the suction side is expected to be the place where cavitation will first de-
velop. 

A final example is that of vortices which are very common structures in many flows. Be-
cause of the rotation and the associated centrifugal forces, the pressure in the core of such 
structures is lower than outside. Hence vortices are likely to cavitate in their core. There are actu-
ally many situations in which cavitating vortices can be observed as tip vortices or coherent 
vortical structures in turbulent flows like wakes or shear layers. 

As known from basic thermodynamics, phase change from liquid to vapor occurs at the va-
por pressure  which depends only upon the temperature. It is usually a good approximation to 
consider that the critical pressure for the onset of cavitation is the vapor pressure , although 
some deviations discussed later may occur. 
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1.1 The cavitation number 

The degree of development of cavitation is characterized by a non dimensional parameter, 
the cavitation number , defined by: 
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In this expression, ref  is a reference pressure taken at a given point in the liquid flow and V 
is a characteristic flow velocity. Both parameters need to be precisely specified for each practical 
situation. As an example, in the case of a cavitating flow past a single foil in a hydrodynamic 
tunnel (see e.g. Figure 3), the reference pressure and velocity are usually chosen as the pressure 
and velocity in the undisturbed liquid flow, far from the foil.  
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A non cavitating flow corresponds to large values of the cavitation number. This is easy to 
understand since large values of the cavitation number usually correspond to large values of the 
reference pressure. Then, it can be expected that the pressure will be everywhere above the vapor 
pressure and the flow will remain free of cavitation. It is clear that the cavitation number has no 
influence on the fully wetted flow which will remain the same whatever the cavitation number 
may be, provided it is large enough for the flow to remain actually non cavitating. This number is 
a pertinent parameter only for cavitating flows for which it can be considered as a scaling parame-
ter which measures the global extent of cavitation. 

The onset of cavitation generally appears for a critical value of the cavitation number known 
as the incipient cavitation number i . Starting from the fully wetted flow, cavitation inception 
can be reached either by decreasing the reference pressure or increasing the flow velocity, both 
leading to a decrease in cavitation number. Any further decrease will lead to an additional devel-
opment of cavitation. In the case of Figure 3 for instance, the cavity will grow and its length will 
increase with a decrease in cavitation number leading to a longer cavity comparable to the super-
cavity shown in Figure 5. If the reference pressure is now increased, it is generally observed that 
cavitation disappears for a critical cavitation number somewhat higher than i . Incipient and 
desinent cavitation numbers are often different and an hysteresis effect is often observed. 

1.2 Main types of cavitation 

Looking at real cavitating flows as that in a cavitating turbopump (Figure 1) or around a pro-
peller (Figure 2), it appears that the liquid vapor interfaces have generally complicated shapes. 
There is a wide variety of types of cavitation and basically we can identify the following ones: 

attached cavities as that shown in Figures 3 to 5. Cavitation appears here in the form of a 
cavity attached to the suction side of the foil. The type of cavitation shown in Figure 3 is 
known as partial cavitation since the cavity covers only partially the upper side. On the 
contrary, a supercavity as shown in Figure 5 fully covers the suction side and closes 
downstream the foil trailing edge. 
traveling bubble cavitation with more or less isolated bubbles according mainly to the 
nuclei density in the free stream (Figures 6 to 8). 
cavitation clouds which can take various forms. Figure 9 gives an example of two clouds 
shed by an unsteady partial cavity. This is an illustration of the partial cavitation instability 



which is triggered by a re-entrant jet developing upward from the closure region of the 
cavity.
cavitating vortices which can be more or less structured. They are observed in particular at 
the tip of three-dimensional foils (Figure 10) or in the turbulent wake of bluff bodies 
where they are less organized because of turbulence (Figure 11). 

Secondary effects as interactions between bubbles or with solid walls, fission, coalescence, 
interface instabilities, re-entrant jet, turbulence… can dramatically complicate previous basic 
shapes of liquid / vapor interfaces at both large and small scales. The analysis of cavitation can 
then be particularly difficult because of the geometric complexity of the liquid / vapor interfaces.

1.3 Overview of chapter 

Despite this complexity, many basic results can be rather easily derived from the Rayleigh-
Plesset equation. This equation, presented in section 2, applies to an isolated spherical bubble 
which is assumed to remain spherical all along its life. It gives how its radius changes because of 
the change in pressure it might go through during its life. This is the case, for instance, of an ini-
tial microbubble or cavitation nucleus carried by a liquid flow which undergoes pressure changes 
as it goes along the blades of a hydraulic machine. It grows in low pressure regions, becomes a 
macroscopic cavitation bubble and finally collapses downstream where the pressure recovers. 

Section 3 is devoted to the presentation of a few basic results on single bubbles. First equilib-
rium is considered and it is shown that the critical pressure for the explosive growth of a nucleus 
may be significantly smaller than vapor pressure because of surface tension. The two main stages 
in the typical evolution of a cavitation bubble, i.e. growth and collapse, are then addressed with 
emphasis on the collapse time, which is a characteristic time scale of great importance in cavita-
tion. Finally, it is shown that a bubble in a liquid is an oscillator because of the elastic behavior of 
the non condensable gas generally enclosed; the period of oscillation, which is another character-
istic time scale, is introduced. 

Section 4 is devoted to the presentation of non dimensional forms of the Rayleigh-Plesset 
equation from which a few conclusions on cavitation scaling are deduced. A first form based on 
the introduction of characteristic times – pressure, viscous and surface tension times – allows the 
estimation of the relative importance of each of these phenomena on the dynamics of a single 
bubble. A second form appropriate to the case of a bubble traveling on the suction side of a blade 
allows the derivation of scaling laws for traveling bubble cavitation.  

Section 5 addresses thermal effects in cavitation. An extended form of the Rayleigh-Plesset 
equation including thermal effects is derived. Once more it is made non dimensional in order to 
develop a practical criterion for the estimation of the so called thermodynamic effect in cavitation. 

Section 6 is relative to supercavitation, a field in which the Rayleigh-Plesset equation is sur-
prisingly applicable. According to the Logvinovich independence principle, the dynamics of any 
cross section of a supercavity is independent of the neighboring ones and can be modeled by a 
Rayleigh type equation. This section shows that the Rayleigh equation, originally derived for 
spherical bubbles, may also be useful for other cavities whose geometry is actually far from being 
spherical. 



Section 7 is devoted to an analysis of cavitation erosion using once more the Rayleigh equa-
tion. Firstly, it is shown that the spherical collapse of a bubble generates a pressure pulse of high 
amplitude that can largely exceed the yield strength of usual materials and hence cause damage. 
The flow aggressiveness of a single bubble and consequently of a whole cavitating flow is then 
analyzed with a special emphasis on the influence of velocity on erosive potential. The section 
closes with a few general remarks on the erosive potential of various cavitating flows, still based 
on a discussion of the Rayleigh equation. 

In section 8, it is shown that the dynamics of other types of cavities, as ring bubbles, can be 
modeled by a Rayleigh-Plesset type equation, with some changes and additional terms which take 
into account the specificities of such cavitating structures, as vorticity. 

The chapter ends with a brief presentation of a cavitation model based on the Rayleigh-
Plesset equation and often used for simulation. The liquid is assumed to carry cavitation nuclei 
and the Rayleigh-Plesset equation, which models the evolution of individual bubbles in the clus-
ter, is coupled to Navier-Stokes equations. Such a technique is appropriate to the modeling of 
complex real cavitating flows, as for instance cloud cavitation generated by a pulsating leading 
edge cavity. 



Figure 1. Cavitating flow in the inducer of a rocket engine turbopump (Courtesy of SNECMA Moteurs 
and CNES) 

Figure 2. Cavitating flow in a marine propeller (Courtesy of DGA/BEC)



Figure 3. Partial cavity flow on a hydrofoil

Figure 4. Unstable partial cavitation on a hydrofoil

Figure 5. Supercavity flow around a hydrofoil in a cavitation tunnel



Figure 6. Two cavitation bubbles on the suction side of a hydrofoil

Figure 7. Traveling bubble cavitation at medium angle of attack

Figure 8. Traveling bubble cavitation at large angle of attack


