
2

Modeling

Dynamic systems may be described in several ways. Physics often yields de-
scriptions in terms of high order differential equations that involve input and
output variables. Starting from this situation, a typical control theoretical
problem is that of restating such input-output descriptions in terms of cou-
pled, first-order differential equations, introducing new instrumental internal
variables or states. For linear systems, it is possible to switch easily from input-
output, or external, representation to state-space, or internal, representation,
using the Laplace transform to change the domain of the representation. Al-
though such a tool for symbolic computation is not available for nonlinear
systems, we show, in this chapter, that internal, state-space representation
can be derived from input-output descriptions (their construction will be de-
scribed as the realization problem) and conversely, external, input-output de-
scriptions can be derived from state-space descriptions (their construction will
be described as the state elimination problem) in a nonlinear context, too.
To develop the tools required for dealing with this kind of problem, we will
start by considering first the state elimination problem and, then, we will
tackle the more relevant problem of constructing state-space representations
from input/output relations.

2.1 State Elimination

Given the internal, or state-space, description of a system Σ, it is possible, in
a sense to be made precise, to construct a representation of the relationship
between input and output that it defines in a form that does not involve
state variables. Although the validity of such a representation is only local,
it nevertheless turns out to be useful for understanding the system behavior
and, more important, its construction helps in clarifying the inverse problem
of defining state variables and state equations from an input/output relation.
To describe the situation, we can consider, without additional difficulties,
internal representations more general than (??), i.e., representations of the
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form {
ẋ = f(x, u, . . . , u(s))
y = h(x, u, . . . , u(s))

(2.1)

where, as usual, x ∈ IRn, u ∈ IRm, and y ∈ IRp, and the entries of f and
h, which depend also on a finite number of time derivatives of the input, are
analytic functions.
So, given a system Σ of the form (2.1), the problem is to find, if possible, a
set of input-output differential equations of the form

Fi(y, ẏ, . . . , y(k), u, u̇, . . . , u(γ)) = 0 , i = 1, . . . , p (2.2)

which admits as solution any pair (y(t), u(t)) such that (y(t), u(t), x(t)) is
a solution, for some x(t), of (2.1). Such a set of differential equations, if any
exists, will be called an external, or input-output, representation of the system
Σ described by (2.1).

Theorem 2.1. Given a system Σ of the form (2.1), where the entries of f
and h are analytic functions, there exist an integer γ and an open dense subset
V of IRn+mγ such that, in the neighborhood of any point of V, there exists an
input-output representation of the system of the form (2.2).

Proof. The first step in constructing an input-output representation consists
of applying a suitable change of coordinates. To this aim, let us denote by s1
the minimum nonnegative integer such that

rank
∂(h1, . . . , h

(s1−1)
1 )

∂x
= rank

∂(h1, . . . , h
(s1)
1 )

∂x

If ∂h1/∂x ≡ 0 we define s1 = 0. Analogously for 1 < j ≤ p, let us denote by
sj the minimum integer such that

rank
∂(h1, . . . , h

(s1−1)
1 ; . . . ;hj , . . . , h

(sj−1)
j )

∂x

= rank
∂(h1, . . . , h

(s1−1)
1 ; . . . ;hj, . . . , h

(sj)
j )

∂x

If

rank
∂(h1, . . . , h

(sj−1−1)
j−1 )

∂x
= rank

∂(h1, . . . , h
(sj−1−1)
j−1 , hj)
∂x

we define sj = 0. Write K = s1 + . . .+ sp. The vector

S = (h1, . . . , h
s1−1
1 , . . . , hp, . . . , h

sp−1
p )

where hj does not appear if sj = 0, satisfies the following relation

rank
[
∂S

∂x

]
= K, for almost every x
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It will be established in Chapter 4 that the case K < n corresponds to
nonobservable systems. In this case, there exist analytic functions g1(x), . . . ,
gn−K(x) such that the matrix

J =
∂(S, g1, . . . , gn−K)

∂x

has full rank n. Then the system of equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1 = h1(x, u, . . . , u(α))
...

x̃s1 = h
(s1−1)
1 (x, u, . . . , u(α+s1−1))

x̃s1+1 = h2(x, u, . . . , u(α))
...

x̃s1+s2 = h
(s2−1)
2 (x, u, . . . , u(α+s2−1))

...
x̃s1+s2+...+sp = h

(sp−1)
p (x, u, . . . , u(α+sp−1))

x̃s1+s2+...+sp+i = gi(x, u, . . . , u(γ)) i = 1, . . . , n−K

(2.3)

is of the form Fi(x, x̃, u, . . . , u(γ)) = 0, i = 1, . . . , n with

∂(F1, . . . , Fn)/∂(x1, . . . , xn) = J

To avoid the introduction of new notations, it is not restrictive to assume
γ ≥ max{α+si−1, i = 1, . . . , p}. The determinant of J is an analytic function
whose set of zeros has an empty interior, so there exists an open dense subset
V of IRn+mγ such that detJ is different from zero at every point of V and
the implicit function theorem applies. Therefore there exist n functions

xi = φi(x̃, u, . . . , u(γ)) for 1 ≤ i ≤ n

which define a local diffeomorphism φ parametrized by u, . . . , u(γ):

x = φ(x̃) (2.4)

By applying the change of coordinates induced by (2.4), the system (2.1)
becomes



24 2 Modeling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1 = x̃2

˙̃x2 = x̃4

...
˙̃xs1 = h

(s1)
1 (φ(x̃), u, . . . , u(γ))

˙̃xs1+1 = x̃s1+2

...
˙̃xs1+s2 = h

(s2)
2 (φ(x̃), u, . . . , u(γ))

...
˙̃xs1+···+sp = h

(sp)
p (φ(x̃), u, . . . , u(γ))

˙̃xs1+···+sp+i = gi(x̃), u, . . . , u(γ)) i = 1, . . . , n−K
y1 = x̃1

y2 = x̃s1+1

...
yp = x̃s1+···+sp−1+1

(2.5)

In the neighborhood of any point where det J �= 0, also

∂h
(si)
i

∂x
∈ spanK

{
∂h1

∂x
, . . . ,

∂h
(s1−1)
1

∂x
,
∂h2

∂x
, . . . ,

∂h
(si−1)
i

∂x

}

so that

∂h
(si)
i

∂x̃
= [c1 . . . cs1+···+si 0 . . . 0]J ∂x∂x̃j

= [c1 . . . cs1+···+si 0 . . . 0] ej = 0 j > s1 + · · · + si

where ej is the jth column of the identity matrix. Therefore the functions
h

(si)
i (φ(x̃), u, . . . , u(γ)) depend only on x̃1, . . . , x̃s1+...+si .

Since the following identities hold,

y1 = x̃1,
ẏ1 = x̃2, . . . ,

y
(r)
1 = x̃1+r for r = 0, . . . , s1 − 1

...
yj = x̃s1+···+sj−1+1

ẏj = x̃s1+···+sj−1+2, . . . ,

y
(r)
j = x̃s1+···+sj−1+1+r for r = 0, . . . , sj − 1, j = 2, . . . , p

From (2.5), we get the input-output relations we were looking for:
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y
(s1)
1 = h

(s1)
1 (φ(y1, ẏ1, . . . , y

(s1−1)
1 ), u, . . . , u(γ))

...
y
(sj)
j = h

(sj)
j (φ(y1, . . . , y

(s1−1)
1 , yj , . . . , y

(sj−1)
j ), u, . . . , u(γ))

...
y
(sp)
p = h

(sp)
p (φ(y1, . . . , y

(s1−1)
1 , . . . , yp, . . . , y

(sp−1)
p ), u, . . . , u(γ))

(2.6)

The input-output equations (2.6) are not uniquely defined since, for in-
stance, if K is less than n, different choices of the functions gi(x, u, . . . , u(γ))
produce a different system (2.3).
Instead of {s1, . . . , sp}, it is possible to use the observability indices as defined
in Chapter 4 to derive an analogous input-output equation.

2.2 Examples

Example 2.2. For the system ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x3u1

ẋ2 = u1

ẋ3 = u2

y1 = x1

y2 = x2

we have ẏ1 = x3u1, ÿ1 = u2u1 + x3u̇1, and finally

ÿ1 = u2u1 + (ẏ1/u1)u̇1

The last equation holds at every point in which u1 �= 0. For the second output,
ẏ2 = u1 immediately.

The following example shows that for a more general nonlinear system, where
ẋ does not appear explicitly, such as

F (x, ẋ, u, . . . , u(ν)) (2.7)

the method described above cannot be applied.

Example 2.3. Consider the system{
(ẋ− u)2 = 0

y = x

The implicit function theorem cannot be invoked to obtain x, since for every
x and every u, ∂(ẋ − u)2/∂x = 0. By the way, an input-output relation for
this example is given by

(ẏ − u)2 = 0

or by
(ẏ − u) = 0
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Results similar to those described above may be found in [156]. A state elim-
ination method which yields global results is studied in [44].

2.3 Generalized Realization

Let us consider now the problem of going from an external, input-output rep-
resentation of a dynamic system to an internal, state-space representation,
that, in a sense to be made precise, defines the same relation between inputs
and outputs as the external representation. We are interested in what is called
the realization problem. In general, as an outcome of the realization process,
starting from an external representation, one would like to obtain internal,
state-space representations of the form (1.4) or, at least, of the form (1.5).
These will be termed classical realizations; more general representations, as
those we will discuss in this section, will be termed generalized realization.
To begin with, we first recall some results from [54], which follow quite nat-
urally from elementary manipulation of input-output equations and which
yield a generalized realization. In the next section, a necessary and sufficient
condition is given for the existence of a classical realization in the single-
input/single-output (SISO) case.
Consider an input-output differential equation of the form

F (y, . . . , y(k), u, . . . , u(s)) = 0 (2.8)

where u and y are, respectively, a scalar input and a scalar output, F is
a meromorphic function of its arguments; and ∂F

∂y(k) is generically nonzero.
An internal representation of the system described by (2.8) can easily be
constructed by introducing the new variable x = (x1, . . . , xk), defined by

(x1, . . . , xk) = (y, . . . , y(k−1)) (2.9)

This yields the following set of implicit state equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

...
ẋk−1 = xk

F (x1, . . . , xk, ẋk, u, . . . , u
(s)) = 0

(2.10)

The assumption about ∂F
∂y(k) and the implicit function theorem , now, allow

us to write, at least locally,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2

...
ẋk−1 = xk

ẋk = ϕ(x, u, u̇, . . . , u(s))
y = x1

(2.11)
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Equations (2.11) give a representation of the input-output relation described
by (2.8) with internal variables. Compared with (1.4), the representation given
by (2.11) can be said to be a generalized realization; the adjective “general-
ized” accounts for the presence of derivatives of u. According to this, the
variable x can be interpreted as a generalized state variable. In addition, note
that the application of the implicit function theorem, beside being noncon-
structive, does not guarantee that ϕ is a meromorphic function.

Example 2.4. Consider the input-output equation ẏ2 = y+ u. The above pro-
cedure yields the implicit state equations

ẋ2 = x+ u

or, locally, one of the following explicit realizations, depending on whether
ẏ > 0 or ẏ < 0. {

ẋ =
√
x+ u

y = x
(2.12)

{
ẋ = −√

x+ u
y = x

(2.13)

Note that the right-hand side of the state equations in the above representa-
tions is not meromorphic at the origin.

In general, the above procedure does not yield classical realizations of the form
(1.4). Also linear input-output relations, in case transmission zeros are present,
give rise, in this way, to generalized realizations. It can be said that, in general,
the presence of derivatives of u is somehow related to the presence of zero
dynamics (this concept will be made more precise in Section 5.6, see also [88])
However, as we will show in the next section, generalized realizations of the
form (2.11) may be transformed under suitable hypotheses into a realization
containing no derivatives of u.

Example 2.5. Consider the linear input-output relation ÿ = u + u̇ that cor-
responds to the transfer function s+1

s2 , having a zero in s = −1. Although
the input-output relation is linear, the above procedure yields a generalized
realization: ⎧⎨

⎩
ẋ1 = x2

ẋ2 = −u− u̇
y = x1

The notions of controllability/accessibility and of observability that one can
use in characterizing the structure of internal representations are reported in
Chapters 3 and 4. Without going into the details now, we mention that, with
respect to those notions, realization (2.11) is in general observable, but not
necessarily accessible . In this sense, it is not minimal.
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2.4 Classical Realization

Conditions for ensuring the existence of a classical realization of the form (1.4),
in particular containing no derivatives of the input, are fully characterized in
[33] (see also [28, 47, 56, 91, 92, 150, 151, 158]). There exist simple input-
output relations which do not admit a classical realization. A typical example
in this sense is given by the input-output relation ÿ = u̇2.
Here we introduce an elementary result that fully solves the problem for the
input-output relations having the particular form

y(k) = ϕ(y, ẏ, . . . , y(k−1), u, u̇, . . . , u(s)). (2.14)

where ϕ is a meromorphic function of its arguments and ∂ϕ
∂y(k) is generically

nonzero. The input-output relation (2.14) admits a realization if and only if the
right-hand side of (4.17) has a special polynomial structure in the derivatives
of u. To investigate this structure, consider the dynamic system Σe whose
input is u(s+1) and whose state is (y, ẏ, . . . , y(k−1), u, u̇, . . . , u(s)).

Σe :
d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
...

y(k−2)

y(k−1)

u
...

u(s−1)

u(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ
...

y(k−1)

ϕ
u̇
...

u(s)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(s+1) (2.15)

= fe + geu
(s+1)

Given system (2.14), define the field K of meromorphic functions in a finite
number of variables y, u, and their time derivatives. Let E be the formal vector
space E = spanK{dϕ | ϕ ∈ K}.

Define the following subspace of E
H1 = spanK{dy, dẏ, . . . ,dy(k−1), du, . . . , du(s)}

Obviously, any one-form in H1 has to be differentiated at least once to depend
explicitly on du(s+1). Let H2 denote the subspace of E which consists of all
one-forms that have to be differentiated at least twice to depend explicitly on
du(s+1). From (2.15), one easily computes

H2 = spanK{dy, dẏ, . . . , dy(k−1), du, . . . , du(s−1)}
H2 is a subspace of H1 which is more generally computed as

H2 = spanK{ω ∈ H1 | ω̇ ∈ H1} (2.16)
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More generally, define Hi as the subspace of E which consists of all one-
forms that have to be differentiated at least i times to depend explicitly on
du(s+1).

More precisely, the subspaces Hi are defined by induction as follows for
i ≥ 2.

Hi+1 = spanK{ω ∈ Hi | ω̇ ∈ Hi}
These subspaces will be used extensively later in this book and especially

in Chapter 3.

2.5 Input-output Equivalence and Realizations

To introduce the equivalence of input-output systems and to study their min-
imal state-space realization, we will use systems Σe, as defined in (2.15).
Consider H∗

∞ = spanK{ω ∈ H∗
1 | ω(k) ∈ H∗

1 , ∀k ≥ 0} = 0. Each nonzero
vector in H∗∞ is said to be autonomous for system (2.14).

2.5.1 Irreducible Input-output Systems

In this section, we will formalize a reduction algorithm to obtain the notion
of input-output equivalence and a definition of realization.

Definition 2.6 (Irreducible input-output system). System (2.14) is said
to be an irreducible input-output system if the associated system (2.15) sat-
isfies

H∞ = 0

Example 2.7. The input-output system ÿ = yu2 + yu̇ is irreducible since

d
dt

⎛
⎜⎜⎝
y
ẏ
u
u̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ẏ
yu2 + yu̇

u̇
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ü

is such that H∞ = 0. It is worth noting that the set of solutions (u(t), y(t))
of ẏ = yu is a subset of the set of solutions of ÿ = yu2 + yu̇, but the systems
are not ”equivalent” according to the forthcoming Definition 2.13.

Example 2.8. ÿ = u̇+ (ẏ − u)2 is not irreducible since

d
dt

⎛
⎜⎜⎝
y
ẏ
u
u̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ẏ
u̇+ (ẏ − u)2

u̇
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ü

is not irreducible since d(ẏ − u) ∈ H∞ and we will claim that ẏ = u is an
irreducible input-output system of ÿ = u̇+ (ẏ − u)2.
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2.5.2 Reduced Differential Form

We are interested in minimal realizations, i.e. of the lowest order. We intro-
duce definitions of reduced differential form, reduced input-output system and
irreducible differential form, etc. to reach that goal.

Definition 2.9 (Reduced differential form). An exact form dφ′ ∈ H∞ is
said to be a reduced differential form of system (2.14) if

(a) dφ′ �≡ 0
(b) dφ′ ∈ H∞.

Definition 2.10 (Reduced input-output system). Let dφ′ be a reduced
differential form, that produces the differential equation

φ′(y, · · · , y(k′−1), y(k′), u, · · · , u(s′)) = 0 (2.17)

such that ∂φ′/∂y(k′) �= 0, ∂φ′/∂u(s′) �= 0, and ∂2φ′/∂y(k′)2 ≡ 0 with k′ > 0,
s′ ≥ 0. Equation (2.17) has a unique solution under the condition ∂φ′/∂y(k′) �≡
0

y(k′) = ϕ′(y, · · · , y(k′−1), u, · · · , u(s′)) (2.18)

Then (2.18) is called a reduced input-output system of system (2.14).

Definition 2.11 (Irreducible differential form). If (2.18) is an irre-
ducible input-output system in the sense of Definition 2.6, then d(y(k′) − ϕ′)
is said to be an irreducible differential form of (2.14).

Example 2.12 (Example 2.8 cont’d). d(ẏ−u) ∈ H∞ and ẏ = u is an irreducible
system. Thus, φ′ = ẏ − u = 0 is an irreducible input-output system of ÿ =
u̇+ (ẏ − u)2.

It is not true that any input-output system has an irreducible input-output
system. Consider

ÿ =
ẏu̇

u
(2.19)

dφ′ = d(ẏ/u) is a reduced differential form of (2.19) according to Definition
2.9. Thus, system (2.19) is not irreducible. Let φ′ = ẏ/u = 0, which is not an
irreducible input-output system in the sense of the above Definition. Therefore,
system (2.19) does not admit any irreducible input-output system.

In the special case of linear time-invariant systems, the reduction procedure
corresponds to a pole/zero cancellation in the transfer function. For nonlinear
systems, the above procedure also generalizes the so-called primitive step in
[28].
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2.5.3 Input-output Equivalence

We restrict our attention to the family of input-output systems that admit an
irreducible input-output system: see Definition 2.6. Therefore, it is possible to
introduce an equivalence relation on the family.

Definition 2.13 (Input-output equivalence). Two input-output systems
are said to be input-output equivalent if they have the same irreducible input-
output system representation

y(κ) = ϕ(y, . . . , y(κ−1), u, . . . , u(σ)) (2.20)

Example 2.14. The two systems

ÿ = u̇− 2(ẏ − u)2

and
y(3) = ü

do admit the same irreducible input-output system, ẏ = u.

2.5.4 Realizations

A general definition of realization is given, that describes the relationships
between state-space equations (1.1) and input-output equations (2.14).

An algorithm realizing the state-space systems (1.1) from input-output
systems (2.14) will be provided in Section 2.8.1, as well as a necessary and
sufficient condition for the existence of such a realization.

Definition 2.15 (Realization). A state-space system (1.1) is said to be a
realization of the input-output system (2.14) if the elimination of the state
variables in (1.1) yields an input-output equation described by

y(κ) = φ(y, . . . , y(κ−1), u, . . . , u(σ))

which is input-output equivalent to (2.14).

The system (2.14) is said to be realizable if there exists a realization in
the sense of Definition 2.15.

2.6 A Necessary and Sufficient Condition for the
Existence of a Realization

We make use here of the subspaces introduced in (2.16), to derive a full char-
acterization of the existence of a classical realization.
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Theorem 2.16. There exists an observable state-space system
{
ẋ = f(x, u)
y = h(x) (2.21)

which is a realization for (2.14) if and only if

• k > s
• and, Hi is integrable for each i = 1, . . . , s+ 2.

Proof. Sufficiency: Let {dξ1, . . . ,dξk} be a basis of Hs+2. From the construc-
tion of the subspaces Hi,

Hs+1 = Hs+2 ⊕ spanK{du}
Hs = Hs+2 ⊕ spanK{du, du̇}

...
H1 = Hs+2 ⊕ spanK{du, . . . , du(s)}

(2.22)

Introduce the following coordinate transformation for the system (2.15):

x1 = ξ1(y, ẏ, . . . , u(s))
...

xk = ξk(y, ẏ, . . . , u(s))
xk+1 = u

...
xk+s+1 = u(s)

(2.23)

From Hs+2 ⊂ Hs+1, it follows dξ̇i =
∑k

j=1 αdξ + βdu, for each j = 1, . . . , k.
Let x = (x1, . . . , xk). Thus, at least locally,

ẋ = f(x, u) (2.24)

The assumption k > s indicates that the output y depends only on x.
Necessity: Assume that the observable state-space system

ẋ = f(x, u)
y = h(x)

is a realization for the input-output system (2.14). Since the state-space sys-
tem is proper, necessarily k > s.

H1 = spanK{dx, du, . . . , du(s)}
...

Hs+1 = spanK{dx, du}
Hs+2 = spanK{dx}

From (2.23), the spaces Hi are integrable as expected.



2.7 Minimal Realizations 33

Example 2.17. Let ÿ = u̇2, and compute

H1 = spanK{dy, dẏ, du, du̇}
H2 = spanK{dy, dẏ, du}
H3 = spanK{dy, dẏ − 2u̇du)}

Since H3 is not integrable, there does not exist any state-space system gener-
ating ÿ = u̇2. This can be checked directly, or using some results in [33].

Example 2.18. Let ÿ = u2. The conditions of Theorem 2.16 are fulfilled and
the state variables x1 = y and x2 = ẏ yield

ẋ1 = x2

ẋ2 = u2

y = x1

whose state elimination yields ÿ = u2.

2.7 Minimal Realizations

The notion of minimality here is standard for linear systems and means that
the dimension of the state-space system equals the order of some reduced
transfer function.

A minimal realization can be obtained directly from the input-output equa-
tion. The notion of irreducible form is used as it is for linear time-invariant
systems. A minimal realization is obtained when constructing a realization as
in the proof of Theorem 2.16, or applying the algorithm in Section 2.8.1, to an
irreducible input-output system, whenever it exists. More precisely, one has

Theorem 2.19. Given an input-output system (2.14), assume that the con-
ditions in Theorem 2.16 are fulfilled. Then, there exists an observable and
controllable, i.e., minimal, realization of order k for (2.14), if and only if
(2.14) is an irreducible input-output system.

Proof. Given (2.14), the generating system (2.21) obtained from Theorem 2.16
is observable. The extended system (2.15) can be written in the coordinates
(2.23). It then reads as the composite system of system (2.24) and the control-
lable string of integrators u̇(i) = u(i+1), i = 0, ..., s. Thus, (2.15) is accessible
if and only if (2.24) is controllable. The result of Theorem 2.19 follows since
(2.15) is controllable if and only if (2.14) is irreducible, by Definition 2.6.

Example 2.20. Consider
φ = ÿ − ẏu− yu̇.
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Compute fe =

⎛
⎜⎜⎝

ẏ
ẏu+ yu̇

u̇
0

⎞
⎟⎟⎠ and ge =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. Thus, dφr = d(ẏ−yu) ∈ H∞. An

irreducible differential form of φ = 0 is dφr = d(ẏ−yu). A minimal realization
is obtained for φ = 0 as {

ẋ = xu
y = x

2.8 Affine Realizations

2.8.1 A Realization Algorithm

Under the conditions of Theorem 2.16, any basis of Hs+2 defines a state
space of the input-output system (2.14). The purpose of this section is to give
an algorithmic construction of a canonical affine state-space representation; it
results from a special choice of the basis for Hs+2 under some special structure
of the input-output equation. Consider the input-output equation (2.14).

Algorithm 2.21

Step 1.
Let r := k − s, then {dy, . . . , dy(r−1)} is a basis for

X1 := Hs+2 ∩ spanK{dy(j), j ≥ 0}

• If ∂2ϕ/∂(u(s))
2 �= 0, stop!

• If ∂2ϕ/∂(u(s))
2

= 0 and d(∂y(k)/∂u(s)) �= 0, define

y11 = ∂y(k)/∂u(s) (2.25)

If d(y(r) − ∂y(k)

∂u(s) u) �= 0, define

y12 = y(r) − ∂y(k)

∂u(s)
u (2.26)

y11 and y12 are called auxiliary outputs.

Step 2.

• If Hs+2 ∩ spanK{dy(i)
11 , i ≥ 0} = 0, then stop!

• Let {dy, . . . ,dy(r−1); dy11, . . . ,dy
(r11−1)
11 } be a basis for

X21 := X1 + Hs+2 ∩ spanK{dy(i)
11 , i ≥ 0}

where r11 = dimX21 − dimX1.
• If Hs+2 ∩ spanK{dy(i)

12 , i ≥ 0} = 0, then stop!
• Let {dy, . . . ,dy(r11−1)

11 ; dy12, . . . ,dy
(r12−1)
12 } be a basis for
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X2 := X21 + Hs+2 ∩ spanK{dy(i)
12 , i ≥ 0}

where r12 = dimX2 − dimX21.
• If ∀� ≥ r1j, dy(	)

1j ∈ X2, set s1j = −1, for j = 1, 2.

If ∃� ≥ r1j , dy
(	)
1j �∈ X2, then define s1j ≥ 0 as the smallest integer such that,

abusing the notation, one has locally

y
(r1j+s1j)
1j = y

(r1j+s1j)
1j (y(λ), y

(σ11)
11 , y

(σ12)
12 , u, . . . , u(s1j))

where 0 ≤ λ < r, 0 ≤ σ11 < r11 + s11, 0 ≤ σ12 < r12 + s12.
• If s11 ≥ 0 and ∂2y

(r11+s11)
11 /∂(u(s11))

2 �= 0
or if s12 ≥ 0 and ∂2y

(r12+s12)
12 /∂(u(s12))

2 �= 0 stop!
• If X2 + U = Y + U , and ∂2y

(r1j+s1j)
1j /∂(u(s1j))

2
= 0 whenever s1j ≥ 0,

then the algorithm stops and the realization is complete. Otherwise, define
the new auxiliary outputs, whenever d(∂y(r1j+s1j)

1j /∂u(s1j)) �= 0, respectively,

d(y(r1j)
1j − ∂y

(r1j+s1j)
1j

∂u(s1j)
u) �= 0:

y21 =
∂y

(r11+s11)
11

∂u(s11)

y22 = y
(r11)
11 − ∂y

(r11+s11)
11
∂u(s11) u

y23 =
∂y

(r12+s12)
12

∂u(s12)

y24 = y
(r12)
12 − ∂y

(r12+s12)
12
∂u(s12) u

Step i+1.
From Step i, one has defined a set of numbers ri−1,j and si−1,j as well as the
auxiliary outputs

yi,2j−1 = ∂y
(ri−1,j+si−1,j)
i−1,j /∂u(si−1,j)

yi,2j = y
(ri−1,j)
i−1,j − ∂y

(ri−1,j+si−1,j)
i−1,j

∂u(si−1,j ) u
(2.27)

for some j ∈ {1, · · · , 2i−1}.
• If D∗

s+2 ∩ spanK{dy(	)
i1 , � ≥ 0} = 0, then stop!

• Let {dy, . . . ,dy(r−1); . . . ; dyi1, . . . ,dy
(ri1−1)
i1 } be a basis for

Xi+1,1 := Xi + D∗
s+2 ∩ spanK{dy(	)

i1 , � ≥ 0}

where ri1 = dimXi+1,1 − dimXi.
• If D∗

s+2 ∩ spanK{dy(	)
ij , � ≥ 0} = 0 for j = 2, . . . , 2i−1, then stop!

• For j = 2, . . . , 2i−1, let
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{dy, . . . , dy(r−1); . . . ; dyij , . . . ,dy
(rij−1)
ij }

be a basis for

Xi+1,j := Xi+1,j−1 + D∗
s+2 ∩ spanK{dy(	)

ij , � ≥ 0}
where rij = dimXi+1,j − dimXi+1,j−1. Set Xi+1 =

∑Xi+1,j

• If ∀� ≥ rij , dy
(rij)
ij ∈ Xi+1, set sij = −1.

If ∃� ≥ rij , dy
(	)
ij �∈ Xi+1, then define sij as the smallest integer such that,

abusing the notation, one has locally

y
(rij+sij)
ij = y

(rij+sij)
ij (y(λ), y

(σ)
ij , u, . . . , u(sij))

where 0 < λ < r, 0 < σ < rij + sij .
• If sij ≥ 0 and ∂2y

(rij+sij)
ij /∂u(sij)

2 �= 0 for some j = 1, . . . , 2i−1, stop!

• If Xi+1 + U = Y + U and ∂2y
(rij+sij)
ij /∂u(sij)

2
= 0, whenever sij ≥ 0,

then the algorithm stops and the realization is completed. Otherwise, define
the new auxiliary outputs, whenever d(∂y(rij+sij)

ij /∂u(sij)) �= 0, respectively,

d(y(rij)
ij − ∂y

(rij+sij)
ij

∂u(sij) u) �= 0:

yi+1,2j−1 =
∂y

(rij+sij)
ij

∂u(sij)
, yi+1,2j = y

(rij)
ij − ∂y

(rij+sij)
ij

∂u(sij)
u

End of the algorithm.

Algorithm 2.21 yields the definition of the state (x1, . . . , xk) = (y(λ), y
(σ)
ij )

where 0 < λ < r, 0 < σ < rij + sij . General necessary and sufficient condi-
tions for the existence of an affine state representation are derived from the
algorithm as well.

Theorem 2.22. System (2.14) admits an affine realization if and only if Al-
gorithm 2.21 can be completed, or equivalently,

• k > s and
∂2y(k)

∂(u(s))2
= 0 (2.28)

• for sij ≥ 0 and any rij > 0, i = 1, 2, . . . , N , j = 1, . . . , 2i,

∂2y
(rij+sij)
ij

∂(u(sij))2
= 0 (2.29)

where yij, rij , and sij are as defined in Algorithm 2.21,
• there exists a finite integer N ≥ 1 such that

N∑
i=1

Xi + U = Y + U (2.30)
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Remark 2.23. Condition (2.29) is mentioned in [28, 158]. It embodies the fact
that the input-output equation (2.14) as well as the differential equations
relating the auxiliary outputs are affine in the highest time derivative of the
input.

Proof (Proof of Theorem 2.22).
Sufficiency: Algorithm 2.21 can be performed if conditions (2.28) and (2.29)
are satisfied. State variables are defined in the procedure of the algorithm. This
algorithm will be completed in finite steps according to condition (2.30). Con-
sequently, an affine, observable generating system is obtained for the input-
output system (2.14).
Necessity: To prove the necessity condition we need a lemma, which is partly
contained in [28, 29, 158].

Lemma 2.24. If there exists a state-space system
{
ẋ = f(x) + g(x)u
y = h(x) (2.31)

which is a generating system for (2.14), locally around any point (y0, ..., u
(s)
0 )

in some suitable open dense subset of IRk+s+1, then ∂2y(k)/∂u(s)2 = 0,
dy11 ∈ spanK{dx}, and dy12 ∈ spanK{dx}.

Proof. It is already known that ∂2y(k)/∂u(s)2 = 0 is a necessary condition for
the existence of an affine realization of a given input-output system [28, 29,
158].

The rest of the statement follows from the equality

y(k−s) = Lk−s
f h+ [LgL

k−s−1
f h]u

= y12 + y11u

If there exists an affine realization, then it can be transformed into the canon-
ical structure displayed by Algorithm 2.21. By Lemma 2.24, (2.28) holds.
Condition (2.29) follows from the proof of Lemma 2.24 which is applied to
each auxiliary output yij , considering all state variables in Xi−1 as param-
eters. The realization is observable and the dimension of the state-space is
finite, which imply (2.30).

2.8.2 Examples

Example 2.25.

Given the input-output differential equation

ÿ = u2 sin y cos y + u̇ sin y (2.32)
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for which k = 2 and s = 1, define

x1 = y(k−s−1) = y

Let
y11 = sin y, y12 = ẏ − u sin y

Then k21 = 0, k22 = 1. The relation

ẏ12 = −y12u cos y

implies that s22 = 0. Define

x2 = y
(k22−s22−1)
12 = y12

Then a realization of (2.32) is obtained:
⎧⎨
⎩
ẋ1 = x2 + (sinx1)u
ẋ2 = −x2(cos x1)u
y = x1

(2.33)

which is both observable and accessible and therefore it is minimal.

Example 2.26.

Consider the input-output system:

uÿ − uẏ(u2 − ẏ2)1/2 − ẏu̇ = 0 (2.34)

and write it as
ÿ = ẏ(u2 − ẏ2)1/2 +

ẏ

u
u̇ (2.35)

The right-hand side of (2.35) is meromorphic on the open and dense subset
of IR3, containing the points (ẏ, u, u̇) such that u2 > ẏ2. Use Algorithm 2.21
to define

x1 = y(k−s−1) = y

and define the auxiliary outputs:

y11 =
ẏ

u
, y12 = ẏ − ẏ

u
u = 0

Then,
ẏ11 = y11(1 − y2

11)
1/2u

Define
x2 = y11

A realization is obtained which has the representation:⎧⎨
⎩
ẋ1 = x2u
ẋ2 = x2(1 − x2

2)
1/2u

y = x1

(2.36)

It does not satisfy the strong accessibility rank condition, so it is not a minimal
realization.
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Example 2.27. [27]

The input-output system

y2y(3)u2 − y3u4 − (3ẏ/y + 2u̇/u)ÿy2u2 + 2ẏ3u2

+2ẏu̇2y2 + 2ẏ2u̇yu− ẏüy2u = 0
(2.37)

can be written as

y(3) = yu2 + (3ẏ/y + 2u̇/u)ÿ − 2ẏ3/y2 − 2ẏu̇2/u2

−2ẏ2u̇/(yu) + ẏü/u
(2.38)

and has been considered before (see Example 2 of [27]). From Step 1 of Algo-
rithm 2.21, k = 3, s = 2. Let x1 = y and define y11 = ẏ/u. Then in Step 2 of
the algorithm,

ÿ11 = yu+ 3y11ẏ11u/y − 2y3
11u

2/y2 + y2
11u̇/y.

So, k11 = 2 and s11 = 1. Let x2 = y11 and define

y22 = ẏ11 − y2
11u/y

Then
ẏ22 = (y + y11y22/y)u

Thus x1 = y, x2 = y11, and x3 = y22 yield
⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2u
ẋ2 = x3 + (x2

2/x1)u
ẋ3 = (x1 + x2x3/x1)u
y = x1

(2.39)

Realization (2.39) is different from the realization given in [27] which is not
required to fit within the canonical scheme of Algorithm 2.21.

2.9 The Hopping Robot

Consider a hopping robot consisting of a body and a single leg, as sketched
in Figure 2.1 . The orientation of the body with respect to the leg is actuated
through torque u1. The length of the leg may vary with the translation of a
piston and it is controlled through a force u2. Although the realization theory
was developed for single input systems, it can easily be used to consider this
two-input system. It is modeled as follows. Let m be the mass of the leg, J the
inertia momentum of the body, r the (variable) length of the leg, θ denotes
the angular position of the body, and φ the angular position of the leg.

If the action of gravity is neglected, then the mechanical equations yield
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Fig. 2.1. Hopping robot

mr̈ −mrφ̇2 = u2

Jθ̈ = u1

mr2φ̈+ 2mrṙφ̇ = −u1

(2.40)

Equations (2.40) are higher order input/ouput equations, considering the
three outputs (r, θ, φ). Construct the extended system Σe defined in (2.15).

d
dt

⎛
⎜⎜⎜⎜⎜⎜⎝

r
ṙ
θ

θ̇
φ

φ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ṙ

rφ̇2

θ̇
0
φ̇

−2 ṙφ̇
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 1/m
0 0

1/J 0
0 0

− 1
mr2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(
u1

u2

)
(2.41)

The latter is not accessible and H∞ is spanned by (2mrφ̇dr+mr2dφ̇+ Jdθ̇).
this one-form is exact and equals d(mr2φ̇+Jθ̇). This is the kinetic momentum
of the hopping robot and is constant. Its minimal realization has not dimension
6. A reduced input-output representation is obtained by

mr̈ −mrφ̇2 = u2

mr2φ̇+ Jθ̇ = 0
mr2φ̈+ 2mrṙφ̇ = −u1

(2.42)

Apply the procedure again, compute the new extended system Σe, whose
dimension is 5 now, and check H∞ = ′. A minimal realization of the hopping
robot (without gravity) thus has dimension 5. Suitable state variables may be
chosen as (r, ṙ, θ, φ, φ̇).
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2.10 Some Models

2.10.1 Electromechanical Systems

Consider an inverted pendulum of length l with a point mass m attached at
the end of the beam, which is actuated by the torque u applied at the base of
the beam. Let g denote the gravitational constant, and ϕ the angular position
of the pendulum with respect to the vertical position. Then the equation of
motion is

ml2ϕ̈−mgl sinϕ = u.

The angle ϕ is the output. Rewriting it into the form (2.14),

ϕ̈ =
1
ml2

[u+mgl sinϕ].

Algorithm 2.21 can be applied that yields the obvious state variables x1 = ϕ
and x2 = ϕ̇. The state realization is then

ẋ1 = x2

ẋ2 = 1
ml2 [u+mgl sinx1]

ϕ = x1

2.10.2 Virus Dynamics

Several models of virus dynamics can be found in [129]. Let us consider here
the HIV infection and the elementary modeling of the immune system when it
is subject to HIV infection. The immune system is based on two main actors,
the so-called CD8 cells and the CD4 cells. The CD4 cells act as markers, they
mark and identify the undesirable agents as viruses, bacteria, etc. The CD8
cells act as killers. However the CD8 cells kill only agents that have been
marked beforehand by some CD4 cell. The body is subject to many infectious
agents, and the majority of those infections have no consequence at all. Some
of them are agressive against specific tissues of the body and the immune
system is able to eliminate the infection. What is unfortunate about HIV is
that this virus attacks the basis of the immune system itself. The HIV virus
infects CD4 cells which will no longer be able to mark the HIV virions. After
the population of healthy CD4 cells decreases, the HIV virions will thus be
protected against the immune system. Infected CD4 cells act as host cells and
they produce new HIV virions. An elementary model may be derived. Let T
denote the population of healthy CD4 cells. Let T ∗ denote the population of
infected CD4 cells. Let v denote the population of HIV virions. As any living
specie, the CD4 cells have some finite lifetime 1/δ. The evolution of some
independent population is then approximated by the linear first-order system:

Ṫ = −δT
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The body is assumed to produce new CD4 cells at some constant rate s; thus,
the evolution of T in a noninfected body will be described by

Ṫ = s− δT

and the population T stabilizes at some equilibrium T0 = s/δ. In an infected
body, besides natural death, the population T decreases due to the agression
of the virus. Part of the healthy CD4 cells will be converted into infected CD4
cells. It is supposed to be proportional to both the T population and the v
population. Finally, the dynamics of T is

Ṫ = s− δT − βTv

The population T ∗ of infected CD4 cells is also submitted to a natural death,
with a lifetime 1/μ. The only source of production of new infected CD4 cells
has already been described and its rate equals βTv. Thus, the dynamics of
T ∗ reads as

Ṫ ∗ = βTv − μT ∗

The population v of HIV virions is submitted to a natural death and their
lifetime equals 1/c. The production of new virions is proportional to the pop-
ulation T ∗ of infected CD4 cells. Let us exclude here the case of new external
injection of some virus load. Then the dynamics of v becomes

v̇ = kT ∗ − cv

Problems

2.1. Consider the following ”Ball and Beam” system [166], whose input is the
angle α and whose output is the ball position r. The input-output equation
of the system is

0 =
(
J

R2
+m

)
r̈ +mg sinα−mrα̇2

where the constant parameters J,R,m, g represent, respectively, the inertia
of the ball, its radius, its mass, and the gravitational constant.

1. Write a generalized state space representation of the system, if any.
2. Write a classical state-space realization, if any. Hint: Apply Theorem 2.16.
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Fig. 2.2. Ball and Beam

2.2. Consider the same ”ball and beam” system as in Exercise 2.1 and assume
that the angle α is produced by a torque u, so that

α̈ = u

Considering u as the input and r as the output, write a classical state-space
realization.

2.3. Consider the following ”Pendulum on a cart” system. Let m and l be the

M

g

l

F

θ

r

 m

Fig. 2.3. Pendulum on a cart

mass and the length of the pendulum, let M be the mass of the cart. The
external force F applied to the cart is the control variable. This system can
be modeled as

(M +m)r̈ + bṙ +mlθ̈ cos θ −mlθ̇2 sin θ = F

(I +ml2)θ̈ +mgl sin θ = −mlr̈ cos θ

Considering the output y = θ, write a classical state-space realization, if any.






