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Preface

The thematic program Calabi–Yau Varieties: Arithmetic, Geometry, and Physics
was held at the Fields Institute for Mathematical Sciences from July 1 to December
31, 2013. It was organized by Mark Gross (UC San Diego/Cambridge), Sergei
Gukov (Caltech), Radu Laza (Stony Brook), Matthias Schütt (Hannover), Johannes
Walcher (McGill), Shing-Tung Yau (Harvard), and Noriko Yui (Kingston/Fields).

This monograph contains introductory material on Calabi–Yau manifolds and is
based on lectures which took place during the introductory period for the workshops
of the thematic program. These workshops (“Modular Forms Around String The-
ory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror
Symmetry,” “Hodge Theory in String Theory”) and consequently the lectures here
explore various perspectives on Calabi–Yau varieties. Thus, the title “Calabi–Yau
Varieties: Arithmetic, Geometry, and Physics” is quite appropriate.

The goal of this volume is to give a friendly introduction to the rapidly developing
and vast research areas concerning Calabi–Yau varieties and string theory. Our hope
is that anyone who wishes to work on or is interested in subjects in this area will start
with this book. More precisely, we would like to tell prospective graduate students
that “This is a book you should read if you are interested in getting into the Calabi–
Yau worlds: mathematics and string theory.”

The articles presented in this volume have been prepared by young researchers
(mostly students and postdocs affiliated with the thematic program) with utmost
enthusiasm, based on the concentrated graduate courses given by them during the
thematic program. The editors wish to express their great appreciation to all of them
for preparing their manuscripts for the Fields Monograph Series, which required
extra effort presenting not only current developments but also some background
material on the topics discussed. All articles in this volume were peer-reviewed.
We are deeply grateful to all the referees for their efforts evaluating the articles, in
particular in the limited time frame. This volume was edited by R. Laza, M. Schütt,
and N. Yui.

The thematic program was financially supported by various organizations. In
addition to the Fields Institute, the program received substantial support from
the NSF (DMS-1247441, DMS-125481), the PIMS CRG Program Geometry and
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vi Preface

Physics, and the Perimeter Institute. Additionally, several participants used their
individual grants (e.g., NSF, ERC, or NSERC) to cover their travel expenses. We
wish to thank all these institutions for their support.

Last but not least, our thanks go to everyone at the Fields Institute for making
this thematic program so successful and enjoyable.

Stony Brook, USA Radu Laza
Hannover, Germany Matthias Schütt
Kingston, Canada Noriko Yui

October 2014
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Part I
K3 Surfaces: Arithmetic,

Geometry and Moduli



The Geometry and Moduli of K3 Surfaces

Andrew Harder and Alan Thompson

1 General Results on K3 Surfaces

We begin by recalling the definition of a K3 surface.

Definition 1. A K3 surface S is a smooth compact complex surface with trivial
canonical bundle !S Š OS and h1.S;OS/ D 0.

Remark 1. Note that an arbitrary K3 surface S is not necessarily projective, but
every K3 surface is Kähler. This was first proved by Siu [65] who, by treating the
K3 case, completed the proof of a conjecture of Kodaira [45, Sect. XII.1] stating
that every smooth compact complex surface with even first Betti number is Kähler.
A direct proof of this conjecture may be found in [7, Thm. IV.3.1].

Unless otherwise stated, throughout these notes S will denote an arbitrary K3
surface. In the remainder of this section we will study the geometry of S, then use
this to initiate our study of the moduli space of K3 surfaces. Our main reference for
this section will be [7, Chap. VIII].

A. Harder
Department of Mathematical and Statistical Sciences, 632 CAB, University of Alberta,
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4 A. Harder and A. Thompson

1.1 Hodge Theory

We begin by studying the Hodge theory of a K3 surface S. The Hodge diamond of
S has the form

h0;0

h1;0 h0;1

h2;0 h1;1 h0;2

h2;1 h1;2

h2;2

D

1

0 0

1 20 1

0 0

1

:

We note that this is largely trivial: the only interesting behaviour happens in the
second cohomology group. As we shall see, the structure of this cohomology group
determines the isomorphism class of a K3 surface, so can be used to construct a
moduli space for K3 surfaces.

The second cohomology group H2.S;Z/ with the cup-product pairing h�; �i forms
a lattice isometric to the K3 lattice

�K3 WD H ˚ H ˚ H ˚ .�E8/˚ .�E8/;

where H is the hyperbolic plane (an even, unimodular, indefinite lattice of rank 2)
and E8 is the even, unimodular, positive definite lattice of rank 8 corresponding to
the Dynkin diagram E8. The lattice �K3 is a non-degenerate even lattice of rank 22
and signature .3; 19/ (for the reader unfamiliar with lattice theory, we have included
a short appendix containing results and definitions relevant to these notes).

There are two important sublattices of H2.S;Z/ that appear frequently in the
study of K3 surfaces. The first is the Néron-Severi lattice NS.S/, given by

NS.S/ WD H1;1.S/ \ H2.S;Z/

(here we identify H2.S;Z/ with its image under the natural embedding H2.S;Z/ ,!
H2.S;C/). By the Lefschetz theorem on .1; 1/-classes [7, Thm. IV.2.13], NS.S/ is
isomorphic to the Picard lattice Pic.S/, with isomorphism induced by the first Chern
class map.

The second important sublattice of H2.S;Z/ is the transcendental lattice T.S/. It
is defined to be the smallest sublattice of H2.S;Z/ whose complexification contains
a generator � of H2;0.S/. In the case where NS.S/ is nondegenerate (which happens,
for instance, when S is projective), then the transcendental lattice is equal to the
orthogonal complement of NS.S/ in H2.S;Z/.

The structure of the second cohomology of S is an important object to study, as
it determines the isomorphism class of S.

Theorem 1 (Weak Torelli [7, Cor. VIII.11.2]). Two K3 surfaces S and S0 are
isomorphic if and only if there is a lattice isometry H2.S;Z/ ! H2.S0;Z/, whose
C-linear extension H2.S;C/! H2.S0;C/ preserves the Hodge decomposition (such
an isometry is called a Hodge isometry).
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1.2 The Period Mapping

We can use the weak Torelli theorem to begin constructing a moduli space for K3
surfaces. We start by defining a marking on the K3 surface S.

Definition 2. A marking on S is a choice of isometry �WH2.S;Z/ ! �K3. We say
that .S; �/ is a marked K3 surface.

Since the canonical bundle of S is trivial, we have H2;0.S/ WD H0.S; ˝2
S / D

H0.S;OS/. Let � 2 H2;0.S/ be any nonzero element. Then � is a nowhere vanishing
2-form on S. Using the Hodge decomposition, we may treat � as an element of
H2.S;C/. This cohomology group carries a bilinear form h�; �i, given by the C-linear
extension of the cup-product pairing, with respect to which we have h�; �i D 0 and
h�; �i > 0.

If � is a marking for S and �CWH2.S;C/ ! �K3 ˝ C is its C-linear extension,
then �C.H2;0.S// is a line through the origin in �K3 ˝ C spanned by �C.�/.
Projectivising, we see that �C.H2;0.S// defines a point in

˝K3 WD fŒ�� 2 P.�K3 ˝ C/ j h�; �i D 0; h�; �i > 0g:

˝K3 is a 20-dimensional complex manifold called the period space of K3
surfaces. The point defined by �C.H2;0.S// is the period point of the marked K3
surface .S; �/.

The Weak Torelli theorem (Theorem 1) gives that two K3 surfaces are isomorphic
if and only if there are markings for them such that the corresponding period points
are the same.

Now we extend this idea to families. Let � WS ! U be a flat family of K3
surfaces over a small contractible open set U and let S be a fibre of � . A choice
of marking �WH2.S;Z/ ! �K3 for S can be extended uniquely to a marking
�UWR2��Z ! .�K3/U for the family S , where .�K3/U denotes the constant sheaf
with fibre �K3 on U. Applying the above construction to the marked K3 surfaces in
the family S , we obtain a holomorphic map U ! ˝K3, called the period mapping
associated to the family � WS ! U.

Applying this to the case where � WS ! U is a representative of the versal
deformation of S, one finds:

Theorem 2 (Local Torelli [7, Thm. VIII.7.3]). For any marked K3 surface S,
the period mapping from the versal deformation space of S to ˝K3 is a local
isomorphism.

This shows that the period mapping is well-behaved under small deformations of
a marked K3 surface. Moreover, we have:

Theorem 3 (Surjectivity of the Period Map [7, Cor. VIII.14.2]). Every point of
˝K3 occurs as the period point of some marked K3 surface.


