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Ouvrez une école, vous fermerez une prison

Victor Hugo

It was in 1934 that Pahlavi High School was established in my hometown,
Kashan. In 1946, the school moved to a new building constructed over a
rather vast area and featuring an awesome architectural design. The school
was renamed Imam Khomeini High School after the 1979 revolution. Over
the years, numerous bright minds were trained in the stimulating environ-
ment of this school. Before long, the impressive school building had become a
reminder of all the great intellectuals who had either studied or taught there.
To the utter regret of the latter, however, the building was completely de-
molished in 1995, only to give way to the current, incomplete one. I dedicate
this monograph to all the caring and respected men, teachers and employees
alike, who kept the flame of education alight for many years in this institute.





Preface

Infinite Blaschke products were introduced by W. Blaschke in 1915 [9]. In
1929, R. Nevanlinna introduced the class of bounded analytic functions with
almost everywhere unimodular boundary values [35]. However, the term in-
ner function was coined much later by A. Beurling in his seminal work on the
invariant subspaces of the shift operator [8]. The first extensive studies of the
properties of inner functions were made by O. Frostman [22], W. Seidel [43]
and F. Riesz [40]. Their efforts to understand the zeros and boundary behav-
ior of bounded analytic functions led to the celebrated canonical factorization
theorem. The special factorization that we need says that each inner func-
tion is the product of a Blaschke product and a zero free inner function, the
so called singular inner function, which is generated by a singular measure
residing on the unit circle. Roughly speaking, we can say that the Blaschke
product is formed with the zeros of an inner function inside the open unit
disc, and the singular part stems from its zeros on the boundary.

In July 2011, E. Fricain and I organized a conference on Blaschke products
and their applications in the Fields Institute (Toronto). There were several
interesting talks about the boundary behavior of inner functions, in partic-
ular Blaschke products, and their derivatives. I felt the need to gather some
classical results in a short monograph for graduate students and as a handy
reference for experts. However, the literature is very vast and it is a difficult
task to choose among various important results. For example, the book of
P. Colwell [16] can provide a panoramic picture of this subject. Hence, I re-
stricted myself just to the integral means of the derivatives and, even for this
narrow subject, I was very selective.

The Fields Institute exclusively supported our conference on Blaschke
products, and its direction constantly helped us for the production of the
proceedings and this monograph. In particular, I owe profound thanks to
Carl Riehm, the Managing Editor of Publications, for his care, guidance, and
enthusiastic support. Last but not the least, I would like to deeply thank

vii



viii Preface

Joseph Cima (University of North Carolina), Ian Graham (University of
Toronto), and Armen Edigarian (Jagiellonian University) who kindly read
the manuscript and made many valuable suggestions. Their remarks enor-
mously improved the quality of text.

Montreal, QC Javad Mashreghi
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4.5 The Carathéodory Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Another Characterization of the Carathéodory Derivative . . . . 68
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Chapter 1

Inner Functions

The theory of Hardy spaces is a well established part of analytic function
theory. Inner functions constitute a special family in this category. Therefore,
it is natural to start with several topics on Hardy spaces and apply them in
our discussions. However, we are not in a position to study this theory in
detail and we assume that our readers have an elementary familiarity with
this subject. In this chapter, we briefly mention, mostly without proof, the
main theorems that we need in the study of inner functions. For a detailed
study of this topic, we refer to [33].

1.1 The Poisson Integral of a Measure

Let μ be a complex Borel measure on the unit circle T. Then the Poisson
integral of μ on the open unit disc D is defined by the formula

Pμ(z) =

∫
T

1− |z|2
|z − ζ|2 dμ(ζ), (z ∈ D).

If dμ(eiθ) = u(eiθ) dθ/2π, where u ∈ L1(T), instead of Pμ we write Pu. It
is easy to verify that h = Pμ is a harmonic function on D. Moreover, using
Fubini’s theorem and the identity

1

2π

∫ 2π

0

1− |z|2
|z − eiθ|2 dθ = 1, (z ∈ D), (1.1)

we see that

1

2π

∫ 2π

0

|h(reiθ)| dθ ≤
∫
T

(
1

2π

∫ 2π

0

1− r2

|reiθ − ζ|2 dθ
)
d|μ|(ζ) = ‖μ‖,
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2 1 Inner Functions

where ‖μ‖ is the total variation of the measure μ on T. Hence, h fulfills the
growth restriction

sup
0≤r<1

∫ 2π

0

|h(reiθ)| dθ <∞. (1.2)

Hence, the Poisson integral of a Borel measure on T is a harmonic function
on D which satisfies (1.2). As a matter of fact, the converse to this assertion
is also true and we have the following complete characterization.

Theorem 1.1 (Plessner [36]) Let h be a function defined on D. Then the
following assertions are equivalent:

(i) h is a harmonic function on D which satisfies the condition (1.2);
(ii) there exists a (unique) Borel measure μ on T such that h = Pμ.

As a special case, if μ is positive, then h = Pμ is a positive harmonic function
on D which satisfies (1.2). And if h is a given positive harmonic function,
then, by the mean value property, it satisfies

∫ 2π

0

|h(reiθ)| dθ =
∫ 2π

0

h(reiθ) dθ = 2πh(0), (0 ≤ r < 1).

Therefore, in this case, Theorem 1.1 is rewritten as follows.

Corollary 1.2 (Herglotz [28]) Let h be a function defined on D. Then the
following assertions are equivalent:

(i) h is a positive harmonic function on D;
(ii) there exists a (unique) positive Borel measure μ on T such that h = Pμ.

The following celebrated result of Fatou provides a sufficient condition for
the existence of radial limits of Pμ.

Theorem 1.3 (Fatou [20]) Let μ be a complex Borel measure on T. Sup-
pose that at eiθ ∈ T the symmetric derivative

μ′(eiθ) = lim
t→0

μ
( {eis : s ∈ (θ − t, θ + t)} )

2t

exists. Then
lim
r→1

Pμ(re
iθ) = 2π μ′(eiθ).

Proof. Without loss of generality, assume that θ = 0. Put

U(x) = μ
( {eis : s ∈ [−π, x)} ), x ∈ [−π, π).

Then integration by parts gives
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Pμ(r) =

∫
T

1− r2

1 + r2 − 2r cos t
dμ(eit)

=

{
1− r2

1 + r2 − 2r cos t
U(t)

} ∣∣∣∣
π

−π

−
∫ π

−π

∂

∂t

{
1− r2

1 + r2 − 2r cos t

}
U(t) dt

=
1− r

1 + r
U(π) +

∫ π

−π

(1− r2) 2r sin t

(1 + r2 − 2r cos t)2
U(t) dt

=
1− r

1 + r
U(π) +

2r

1 + r

∫ π

−π

(1 + r)2 (1− r) t sin t

(1 + r2 − 2r cos t)2
× U(t)− U(−t)

2t
dt.

Let

φ(t) =
U(t)− U(−t)

2t
− μ′(1) =

1

2t

∫ t

−t

dμ(eis)− μ′(1), (−π ≤ t ≤ π),

and note that, by assumption,

lim
t→0

φ(t) = 0. (1.3)

Let

Fr(t) =
(1 + r)2 (1− r) t sin t

(1 + r2 − 2r cos t)2
, (0 ≤ r < 1, −π ≤ t ≤ π).

This function satisfies the following properties:

(i) Fr ≥ 0;
(ii)

1

2π

∫ π

−π

Fr(t) dt = 1;

(iii) for each fixed 0 < δ < π, we have

lim
r→0

(
sup

δ<|t|≤π

Fr(t)

)
= 0.

In technical language, Fr is a positive approximate identity on [−π, π]. Using
the new notations, we have

lim
r→1

Pμ(r) = lim
r→1

∫ π

−π

Fr(t)
(
φ(t)+μ′(1)

)
dt = 2πμ′(1)+lim

r→1

∫ π

−π

Fr(t)φ(t) dt.

By (1.3), given ε > 0, there is δ such that |φ(t)| < ε, whenever |t| < δ.
Without loss of generality, assume that δ < π. Then we have
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∣∣∣∣
∫ π

−π

Fr(t)φ(t) dt

∣∣∣∣ ≤
∫ δ

−δ

Fr(t) |φ(t)| dt+
∫
δ<|t|≤π

Fr(t) |φ(t)| dt

≤ ε

∫ δ

−δ

Fr(t) dt+

(
max

−π≤t≤π
|φ(t)|

) ∫
δ<|t|≤π

Fr(t) dt

≤ 2πε+ π

(
max

−π≤t≤π
|φ(t)|

) (
sup

δ<|t|≤π

Fr(t)

)
.

Therefore, for each ε > 0,

lim sup
r→1

∣∣∣∣
∫ π

−π

Fr(t)φ(t) dt

∣∣∣∣ ≤ 2πε.

This fact ensures that
lim
r→1

Pμ(r) = 2πμ′(1).

By Lebesgue’s decomposition theorem, for each complex Borel measure μ,
there are a function u ∈ L1(T) and a complex singular Borel measure σ such
that

dμ(eiθ) = u(eiθ) dθ/2π + dσ(eiθ).

Moreover, for almost all eiθ ∈ T,

μ′(eiθ) = lim
t→0

μ
( {eis : s ∈ (θ − t, θ + t)} )

2t
=
u(eiθ)

2π
.

Hence, we immediately obtain the following two results. First, if μ = σ is a
complex singular Borel measure on T, then

lim
r→1

Pσ(re
iθ) = 0 (1.4)

for almost all eiθ ∈ T. Second, if dμ = u dθ/2π is absolutely continuous, then

lim
r→1

Pu(re
iθ) = u(eiθ) (1.5)

for almost all eiθ ∈ T.
The following variant of Fatou’s theorem will also be needed. Since Fr is

a positive approximate identity, the proof of Theorem 1.3, with slight modi-
fication, works in this case too.

Theorem 1.4 Let μ be a finite positive Borel measure on T, and let eiθ ∈ T

be such that

μ′(eiθ) = lim
t→0

μ
( {eis : s ∈ (θ − t, θ + t)} )

2t
= ∞.


