Honghua Dai · James N.K. Liu Evgueni Smirnov *Editors*

Reliable Knowledge Discovery

Reliable Knowledge Discovery

Honghua Dai • James N.K. Liu • Evgueni Smirnov Editors

Reliable Knowledge Discovery

Editors Honghua Dai Deakin University Burwood, Victoria, Australia

James N.K. Liu The Hong Kong Polytechnic University Hong Kong

Evgueni Smirnov Maastricht University Maastricht, The Netherlands

ISBN 978-1-4614-1902-0 e-ISBN 978-1-4614-1903-7 DOI 10.1007/978-1-4614-1903-7 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012932410

© Springer Science+Business Media, LLC 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

1 Description

With the rapid development of the data mining and knowledge discovery, a key issue which could significantly affect the real world applications of data mining is the reliability issues of knowledge discovery. It is natural that people will ask if the discovered knowledge is reliable. Why do we trust the discovered knowledge? How much can we trust the discovered knowledge? When it could go wrong. All these questions are very essential to data mining. It is especial crucial to the real world applications.

One of the essential requirements of data mining is validity. This means both the discovery process itself and the discovered knowledge should be valid. Reliability is a necessary but not sufficient condition for validity. Reliability could be viewed as stability, equivalence and consistency in some ways.

This special volume of the book on the reliability issues of Data Mining and Knowledge Discovery will focus on the theory and techniques that can ensure the discovered knowledge is reliable and to identify under which conditions the discovered knowledge is reliable or in which cases the discovery process is robust. In the last 20 years, many data mining algorithms have been developed for the discovery of knowledge from given data bases. However in some cases, the discovery process is not robust or the discovered knowledge is not reliable or even incorrect in certain cases. We could also find that in some cases, the discovered knowledge may not necessary be the real reflection of the data. Why does this happen? What are the major factors that affect the discovery process? How can we make sure that the discovered knowledge is reliable? What are the conditions under which a reliable discovery can be assured? These are some interesting questions to be investigated in this book.

vi Preface

2 Scope and Topics of this Book

The topics of this book covers the following:

- The theories on reliable knowledge discovery
- Reliable knowledge discovery methods
- · Reliability measurement criteria of knowledge discovery
- · Reliability estimation methods
- General reliability issues on knowledge discovery
- · Domain specific reliability issues on knowledge discovery
- The criteria that can be used to assess the reliability of discovered knowledge.
- The conditions under which we can confidently say that the discovered knowledge is reliable.
- The techniques which can improve reliability of knowledge discovery
- Practical approaches that can be used to solve reliability problems of data mining systems.
- The theoretical work on data mining reliability
- The practical approaches which can be used to assess if the discovered knowledge is reliable.
- The analysis of the factors that affect data mining reliability
- · How reliability can be assessed
- In which condition, the reliability of the discovered knowledge is assured.

3 The Theme and Related Resources

The main purpose of this book is to encourage the use of Reliable Knowledge Discovery from Databases (RKDD) in critical-domain applications related to society, science, and technology. The book is intended for practitioners, researchers, and advanced-level students. It can be employed primarily as a reference work and it is a good compliment to the excellent book on reliable prediction Algorithmic learning in a random world by Vladimir Vovk, Alex Gammerman, and Glenn Shafer (New York: Springer, 2005). Extra information sources are the proceedings of the workshops Reliability Issues in Knowledge Discovery held in conjunction with the IEEE International Conferences on Data Mining. Other relevant conferences are the Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), the International Conference on Machine Learning (ICML), The pacific-Asia Conference on Knowledge Discovery (PAKDD), and the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). Many AI-related journals regularly publish work in RKDD. Among others it is worth mentioning the Journal of Data Mining and Knowledge Discovery, the Journal of Machine Learning Research, and the Journal of Intelligent Data Analysis.

Preface vii

4 An Overview of the Book

This book presents the recent advances in the emerging field of **Reliable Knowledge Discovery from Data (RKDD)**. In this filed the knowledge is considered as reliable in the sense that its generalization performance can be set in advance. Hence, RKDD has a potential for a broad spectrum of applications, especially in critical domains like medicine, finance, military etc. The main material presented in the book is based on three consequent workshops Reliability Issues in Knowledge Discovery held in conjunction with the IEEE International Conferences on Data Mining (ICDM) in 2006, 2008, and 2010, respectively. In addition we provided an opportunity to authors to publish the results of their newest research related to RKDD.

This book is organized in seventeen chapters divided into four parts.

Part I includes three chapters on Reliability Estimation.

Chapter 1 provides an overview of typicalness and transductive reliability estimation frameworks. The overview is employed for introducing an approach for accessing reliability of individual classifications called joint confidence machine. Chapter 1 describes an approach that compensates the weaknesses of typicalness-based confidence estimation and transductive reliability estimation by integrating them into a joint confidence machine. It provides better interpretation of the performance of any classifiers. Experimental results performed with different machine learning algorithms in several problem domains show that there is no reduction of discrimination performance and is more suitable for applications with risk-sensitive problems with strict confidence limits.

Chapter 2 introduces new approaches to estimating and correcting individual predictions in the context of stream mining. It investigates the online reliability estimation of individual predictions. It proposes different strategies and explores techniques based on local variance and local bias, of local sensitivity analysis and online bagging of predictors. Comparison results on benchmark data are given to demonstrate the improvement of prediction accuracy.

Chapter 3 deals with the problem of quantifying the reliability in the context of neural networks. It elaborates on new approaches to estimation of confidence and prediction intervals for polynomial neural networks.

viii Preface

Part II includes seven chapters on Reliable Knowledge Discovery Methods.

Chapter 4 investigates outliers in regression targeting robust diagnostic regression. The chapter discusses both robust regression and regression diagnostics, presents several contemporary methods through numerical examples in linear regression.

Chapter 5 presents a conventional view on the definition of reliability; points out the three major categories of factors that affect the reliability of knowledge discovery, examined the impact of model complexity, weak links, varying sample sizes and the ability of different learners to the reliability of graphical model discovery, proposed reliable graph discovery approaches.

Chapter 6 provides a generalization of version spaces for reliable classification implemented using support vector machines.

Chapter 7 presents a unified generative model ONM which characterizes the life cycle of a ticket. The model uses maximum likelihood estimation to capture reliable ticket transfer profiles which can reflect how the information contained in a ticket is used by human experts to make reliable ticket routing decisions.

Chapter 8 applies the methods of aggregation functions for the reliable web based knowledge discovery from network trafic data.

Chapter 9 gives two new versions of SVM for the regression study of features in the problem domain. It provides means for feature selection and weighting based on the correlation analysis to give better and reliable result.

Chapter 10 describes in detail an application of transductive confidence machines for reliable handwriting recognition. It introduces a TCM framework which can enhance classifiers to reduce the computational costs and memory consumption required for updating the non-conformity scores in the offline learning setup of TCMs. Results are found to have outperformed previous methods on both relatively easy data and on difficult test samples.

PART III includes four Chapters on Reliability Analysis.

Chapter 11 addresses the problem of reliable feature selection. It introduces a generic-feature-selection measure together with a new search approach for globally optimal feature-subset selection. It discusses the reliability in the feature-selection process of a real pattern-recognition system, provides formal measurements and allows consistent search for relevant features in order to attain global optimal solution.

Chapter 12 provides three detailed case studies to show how the reliability of an induced classifier can be influenced. The case study results reveal the impact of data-oriented factors to the relaibility of the discovered knowledge.

Chapter 13 analyzes recently-introduced instance-based penalization techniques capable of providing more accurate predictions.

Preface

Chapter 14 investigates subsequence frequency measurement and its impact on the reliability of knowledge discovery in single sequences.

PART IV includes three chapters on Reliability Improvement Methods.

Chapter 15 proposed to use the inexact field learning method and parameter optimized one-class classifiers to improving reliability of unbalanced text mining by reducing performance bias.

Chapter 16 proposes a formal description technique for ontology representation and verification using a high level Petri net approach. It provides the capability of detection and identification of potential anomalies in ontology for the improvement of the discovered knolwedge.

Chapter 17 presents an UGDSS framework to provide reliable support for multicriteria decision making in uncertainty problem domain. It gives the system design and architecture.

5 Acknowledgement

We would like to thank many people that made this book possible. We start with the organizers of the workshops held in conjunction with the IEEE International Conferences on Data Mining (ICDM): Shusaku Tsumoto, Francesco Bonchi, Bettina Berendt, Wei Fan and Wynne Hsu. We express our gratitude to the authors whose contributions can be found in the book. Finally, we thank our colleagues from Springer that made the publication process possible in a short period.

Burwood Victoria (Australia), Hong Kong (China), Maastricht (The Netherlands), Honghua Dai James Liu Evgueni Smirnov August 2011

Contents

Part I Reliability Estimation

l	Tran	sductive Reliability Estimation for Individual Classifications			
	in Ma	achine Learning and Data Mining	3		
	Matja	ž Kukar			
	1.1	Introduction	3		
	1.2	Related work	4		
		1.2.1 Transduction	5		
	1.3	Methods and materials	6		
		1.3.1 Typicalness	6		
		1.3.2 Transductive reliability estimation	8		
		1.3.3 Merging the typicalness and transduction frameworks 1	5		
		1.3.4 Meta learning and kernel density estimation 10	6		
		1.3.5 Improving kernel density estimation by transduction			
		principle	8		
		1.3.6 Testing methodology	8		
	1.4	Results	0		
		1.4.1 Experiments on benchmark problems	0		
		1.4.2 Real-life application and practical considerations	2		
	1.5	Discussion	3		
	Refer	ences	6		
2	Estin	nating Reliability for Assessing and Correcting Individual			
	Streaming Predictions				
	Pedro	Pereira Rodrigues, Zoran Bosnić, João Gama, and Igor			
	Kono	nenko			
	2.1	Introduction	0		
	2.2	Background	0		
		2.2.1 Computation and utilization of prediction reliability			
		estimates	1		

xii Contents

		2.2.2	Correcting individual regression predictions	32
		2.2.3	Reliable machine learning from data streams	32
	2.3	Estima	ting reliability of individual streaming predictions	34
		2.3.1	Preliminaries	34
		2.3.2	Reliability estimates for individual streaming predictions	35
		2.3.3	Evaluation of reliability estimates	37
		2.3.4	Abalone data set	39
		2.3.5	Electricity load demand data stream	40
	2.4	Correc	ting individual streaming predictions	40
		2.4.1	Correcting predictions using the CNK reliability estimate	41
		2.4.2	Correcting predictions using the Kalman filter	42
		2.4.3	Experimental evaluation	43
		2.4.4	Performance of the corrective approaches	44
		2.4.5	Statistical comparison of the predictions' accuracy	45
	2.5	Conclu	isions	46
	Refe	rences		48
,	E	Dana fa	on Delan endel Neural Networks	<i>5</i> 1
3			or Polynomial Neural Networks	51
	3.1		action	51
	3.1		c Programming of PNN	
	3.2	3.2.1	Polynomial Regression	
		3.2.1	Tree-structured PNN	
		3.2.2	Weight Learning	
		3.2.3	Mechanisms of the GP System	
	3.3		es of PNN Deviations	56 56
	3.4		ting Confidence Intervals	56
	3.4	3.4.1	Delta Method for Confidence Intervals	57
		3.4.1	Residual Bootstrap for Confidence Intervals	59
	3.5		ting Prediction Intervals	60
	3.3	3.5.1	Delta Method for Prediction Intervals	61
		3.5.2	Training Method for Prediction Bars	
	3.6		ision	
			ISIOII	
	KCICI	clices		03
Pa	rt II R	eliable K	Knowledge Discovery Methods	
4	Robu	ıst-Diagı	nostic Regression: A Prelude for Inducing Reliable	
			rom Regression	69
	Abdu	ıl Awal M	Id. Nurunnabi, and Honghua Dai	
	4.1	Introdu	action	70
	4.2	Backgr	round of Reliable Knowledge Discovery	71
	13	Lincor	Pagrassian OI S and Outliers	72

Contents xiii

	4.4	Robust	ness and Robust Regression	73
		4.4.1	Least Median of Squares Regression	
		4.4.2	Least Trimmed Squares Regression	
		4.4.3	Reweighted Least Squares Regression	
		4.4.4	Robust M (GM)- Estimator	
		4.4.5	Example	77
	4.5	Regres	sion Diagnostics	
		4.5.1	Examples	85
	4.6	Conclu	Iding Remarks and Future Research Issues	89
	Refe	rences		90
5	Relia	ıble Graj	ph Discovery	93
		ghua Dai	•	
	5.1	Introdu	iction	93
	5.2	Reliabi	ility of Graph Discovery	95
	5.3		That Affect Reliability of Graph Discovery	
	5.4	The Im	pact of Sample Size and Link Strength	97
	5.5	Testing	Strategy	98
	5.6	Experi	mental Results and Analysis	
		5.6.1	Sample Size and Model Complexity	
	5.7		sions	
	Refe	rences		105
6	Com	bining V	Version Spaces and Support Vector Machines for	
			sification	109
	Evgu		nov, Georgi Nalbantov, and Ida Sprinkhuizen-Kuyper	
	6.1		action	
	6.2		f Reliable Classification	
	6.3	Version	n Spaces	
		6.3.1	Definition and Classification Rule	
		6.3.2	Analysis of Version-Space Classification	
		6.3.3	Volume-Extension Approach	
	6.4		t Vector Machines	
	6.5	Version	n Space Support Vector Machines	
		6.5.1	Hypothesis Space	
		6.5.2	Definition of Version Space Support Vector Machines .	
		6.5.3	Classification Algorithm	
	6.6		lume-Extension Approach for VSSVMs	
	6.7		ments	
	6.8	1		
		6.8.1	Bayesian Framework	123
		6.8.2	Typicalness Framework	
	6.9	Conclu	sion	
	Refer	rences		125

xiv Contents

7	Relia	able Tick	tet Routing in Expert Networks	127	
			o, Louise E. Moser, Xifeng Yan, Shu Tao, Yi Chen, and		
	Niko	s Anerou	asis		
	7.1	Introdu	action	128	
	7.2	Related	d Work	129	
	7.3	Prelim	inaries	131	
	7.4	Genera	ative Models	133	
		7.4.1	Resolution Model (RM)	133	
		7.4.2	Transfer Model (TM)	134	
		7.4.3	Optimized Network Model (ONM)	134	
	7.5	Ticket	Routing	137	
		7.5.1	Ranked Resolver	137	
		7.5.2	Greedy Transfer	138	
		7.5.3	Holistic Routing	139	
	7.6	Experi	mental Results	141	
		7.6.1	Data Sets	141	
		7.6.2	Model Effectiveness	142	
		7.6.3	Routing Effectiveness	143	
		7.6.4	Robustness	144	
	7.7	Conclu	usions and Future Work	144	
	Refe	rences		145	
0	ъ и		. N. 175 60 6 W15 117 11		
8			regation on Network Traffic for Web Based Knowledg		
			on James, Yonghong Tian, and Wanchun Dou	149	
	8.1		on James, Yonghong Tian, and Wanchun Dou	150	
	8.2				
	8.3	The Reliability of Network Traffic Information			
	8.4	Aggregation Functions			
	8.5		mance Comparison for Information Distances		
	8.6		*		
			ary		
	Reie	rences	•••••	136	
9	Sens	itivity an	nd Generalization of SVM with Weighted and Reduced	1	
			James N.K.Liu, and Li-wei Jia		
	9.1	Introduction			
	9.2				
		9.2.1	The Classical SVM Regression Problem		
		9.2.2	Rough Set SVM Regression		
		9.2.3	Grey Correlation Based Feature Weighted SVM		
			Regression	167	
	9.3	Experi	mental Results and Analysis		
		9.3.1	Data Collection		
		9.3.2	Data Pre-processing		