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We dedicate this book to the memory  
of Arthur Middleton who was taken from  
us at the age of 16 by a senseless act  
of violence. The contributions that Arthur 
made to our understanding of children’s 
powerful ways of constructing mathematical 
knowledge will live on in these pages.  
The world is a poorer place for the lack of 
what we know he could have accomplished. 
Our lives and our research are so much 
richer for having known and worked  
with him during our teaching experiment.



vii

Preface

The basic hypothesis that guides our work is that children’s fractional knowing can 
emerge as accommodations in their natural number knowing. This hypothesis is 
referred to as the reorganization hypothesis because if a new way of knowing is 
constructed using a previous way of knowing in a novel way, the new way of know-
ing can be regarded as a reorganization of the previous way of knowing. In contrast 
to the reorganization hypothesis, there is a widespread and accepted belief that 
natural number knowing interferes with fractional knowing. Within this belief, 
children are observed using their ways and means of operating with natural 
numbers while working with fractions and the former are thought to interfere with 
the latter. Children are also observed dealing with fractions in the same manner as 
with natural numbers, and it is thought that we must focus on forming a powerful 
concept of fractions that is resistant to natural number distractions.

In our work, we focus on what we are able to constitute as mathematics of children 
rather than solely use our own mathematical constructs to interpret and organize our 
experience of children’s mathematics. This is a major distinction and it enables us 
to not act as if children have already constructed fractional ways of knowing with 
which natural number knowing interferes. Rather, we focus on the assimilative 
activity of children and, on that basis, infer the concepts and operations that chil-
dren use in that activity. Focusing on assimilative activity opens the way for study-
ing reorganizations we might induce in the assimilative concepts and operations 
and, hence, it opens the way for studying how children might use their natural 
number concepts and operations in the construction of fractional concepts and 
operations.

The question concerning whether fractional knowing necessarily emerges inde-
pendently of natural number knowing is based on the assumption that the operations 
involved in fractional knowing have their origin in continuous quantity and only mini-
mally involve discrete quantitative operations. In a developmental analysis of 
the operations that produce discrete quantity and continuous quantity, we show 
that the operations that produce each type of quantity are quite similar and can be 
regarded as unifying quantitative operations. The presence of such unifying opera-
tions is essential and serves as a basic rationale for the reorganization hypothesis.

We investigated the reorganization hypothesis in a 3-year teaching experiment 
with children who were third graders at the beginning of the experiment. We selected the 
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children on the basis of the stages in their construction of their number sequences. 
Our research hypothesis was that the children would use their number sequences in 
the construction of their fractional concepts and operations, that the nature and 
quality of the fractional knowledge the children constructed within the stages 
would be quite similar, and that the nature and quality of the fractional knowledge 
the children constructed across the stages would be quite distinct. We did not begin 
the teaching experiment with foreknowledge of how the children would use their 
number sequences in their construction of fractional knowledge, nor the nature and 
quality of the knowledge they might construct. This book provides detailed 
accounts of how we tested our research hypothesis as well as detailed accounts of 
the fractional knowledge the children did construct in the context of working with 
us in the teaching experiment and of how we engendered the children’s constructive 
activity. We do not report on the children who began the teaching experiment in the 
initial stage of the number sequence because of the serious constraints we experi-
enced when teaching them.

Our overall goal is to establish images of how the mathematics of children might 
be used in establishing a school mathematics that explicitly includes children’s 
mathematical thinking and learning. Toward that goal, we provide accounts of how 
the reorganization hypothesis was realized in the constructive activity of the partici-
pating children as well as how their number sequences both enabled and con-
strained their constructive activity. Further, we provide models of children’s 
fractional knowing that we refer to as children’s fraction schemes and explain how 
these fraction schemes are based on partitioning schemes. We found that partition-
ing is not a singular construct and broke new ground in explaining six partitioning 
schemes that are inextricably intertwined with children’s number sequences and the 
numerical schemes that follow on from the number sequences. Explaining fraction 
schemes in terms of the partitioning schemes provides a way of thinking about frac-
tions in terms of children’s fraction schemes rather than in terms of the rational 
numbers. We used our understanding of the rational numbers throughout the teach-
ing experiment as orienting us in our various activities, but we make a distinction 
between our concepts of rational numbers and our concepts of children’s fraction 
schemes. The former are a part of our first-order mathematical knowledge and the 
latter are a part of our second-order mathematical knowledge.

Athens, Georgia, USA Leslie P. Steffe
John Olive
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Foreword

It is a rare experience in the life of an academic to stand in awe of a body of work. 
I confess to having had that feeling in the midst of reading Steffe’s and Olive’s 
(SO’s) account of children’s development of fraction knowledge from numerical 
counting schemes. Their enterprise is especially important, for several reasons – 
some having to do with fractions and others having to do with science. I’ll first say 
something about the latter and then speak to the former.

Science

George Johnson (2008) tells the stories of ten experiments that emanated from 
people questioning accepted wisdom about the physical world and the way it 
works. His stories are not of individual genius. Rather, the stories are about the 
scientific method of postulating invisible forces and mechanisms behind observable 
phenomena, perturbing materials to see if they respond the way your model pre-
dicts, and, most importantly, revising your model in light of the specific ways your 
predictions failed. The stories, above all, are a quest for understanding.

Whether research in mathematics education is scientific has been under heavy 
debate recently. Psychologists, especially experimental psychologists, tend to 
think it has been unscientific because of its lack of randomized sampling, experi-
mental controls, and statistical analyses. I would argue, however, that it is those 
who confuse method with inquiry who are too often unscientific. Science is not 
about what works. Science is about the way things work. Johnson’s stories repeat-
edly reveal that scientific advances happen when new conceptualizations of phe-
nomena lead to greater coherence among disparate facts and theories. Lavoisier’s 
investigations into the nature of phlogiston, the “stuff” whose release from a 
substance produces flames, eventually led him to the conclusion that there is no 
such stuff as phlogiston! After Lavoisier, no one saw combustion as entailing the 
hidden forces and mechanisms that everyone saw 10 years prior. Were modern 
psychologists dominant in 1790, they would have criticized Lavoisier for his lack 
of experimental control. But he had a strong experimental control – an initial 
model of how combustion is supposed to work and of the materials involved 
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in those processes, and it was his model of how combustion works that he 
investigated.

It is in this spirit that you must read this book – that SO’s enterprise is to start 
with, test, and refine their models of children’s fractional thinking. They also take 
seriously the constraints of employing a constructivist framework for their models, 
predictions, and explanations: Children’s mathematical knowledge does not appear 
from nothing. It comes from what children know in interaction with situations that 
they construe as being somehow problematic. To be scientific in this investigation, 
SO take great pains to give precise model-based accounts of the ways of thinking 
that children bring to the settings that SO design for them.

Which brings up another point. The significance of children’s behaviors can only 
be judged in the context of the tasks with which they engage and as they construe them. 
In fact, how a child construes a task often gives insight into the ways of thinking the 
child has. I urge readers to read SO’s tasks carefully and to understand the comput-
ing environment that gave context to them. The computing environment (TIMA) 
afforded actions to children that are not possible with physical sticks, and hence 
children were able to express anticipations of acting that would not have been 
possible outside that environment. Read the tasks slowly so as to imagine what 
cognitive issues might be at play in responding to them. I urge you also to read 
teaching-experiment excerpts slowly. SO’s models afford very precise predictions 
of children’s behavior and very precise explanations of their thinking, so the smallest 
nuance in a child’s behavior can have profound implications for the theoretical 
discussion of that behavior. For example, according to SO’s models of number 
sequences, if a child partitions a segment into 10 equal-sized parts, but has to physi-
cally iterate one part to see how long 10 of them will be, this has tremendous 
implications for the fraction knowledge we can attribute to him or her. The contribu-
tion of SO’s work is that their theoretical framework not only supports such nuanced 
distinctions, but also allows us to understand what might appear to some as uneven 
fraction knowledge instead as a coherent system of thinking that has evolved to a 
particular state (and will evolve further to states of greater coherence).

Finally, it is imperative in reading this book that you understand that SO employ 
teaching as an experimental method. Understanding this, however, requires an 
expanded meaning for experiment and a nonstandard meaning for teaching. The idea 
of a scientific experiment is to poke nature to see how it responds. That is, we start 
with an idea of how nature works in some area of interest, perturb nature to see 
whether it responds in the way our understandings would suggest, nature responds 
according to its own structures, and then we revise our understandings accordingly. It 
is in this respect – teaching as a designed provocation – that it can be used as an 
experimental method in understanding children’s thinking. To be used effectively as 
an experimental method, though, you cannot think of teaching as a means for trans-
mitting information to children. Rather, you must think of it as an interaction with 
children that is guided by your models of children’s thinking and by what you discern 
of their thinking by listening closely to what they say and do. Of course, all this is 
with the backdrop that children are participating according to their ways of thinking 
and with the intent of understanding your, the teacher’s, actions.
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Fractions

SO’s basic thesis is that children’s fraction knowledge can emerge by way of a 
reorganization of their numerical counting schemes. This might, at first blush, seem 
like a weak hypothesis, as in “you can devise super special methods and invest 
super human effort to have students create fractions from their counting schemes.” 
I propose a different interpretation:

If allowed, children can, and in most cases will, use their counting schemes to create ways 
of understanding numerical and quantitative relationships that we recognize as powerful 
fractional reasoning.

The phrase “if allowed” is highly loaded. It does not mean that children should 
be turned loose, with no adult intervention, to create their own mathematics. We 
know that little of consequence will result. Rather, it means that the instructional 
and material environments must be shaped so that they are amenable to children 
using natural ways of reasoning to create more powerful ways of reasoning – they 
are designed to respect children’s thinking and build from it.

There are three important aspects to SO’s argument for the reorganization 
hypothesis. The first is that they did not start with it. Rather, it emerged from their 
interactions with children. In a sense, the children forced the reorganization hypoth-
esis upon SO. Children whose number sequences did not progress to higher levels 
of organization simply were unable to progress in their fraction knowledge despite 
SO’s best attempts to move them along. Children whose number sequences were 
limited, developmentally speaking, to early forms simply could not see fraction 
tasks in the ways that children with the generalized number sequence could.

Second, the reorganization hypothesis entails the claim that children’s number 
sequences are very much at play as they develop spatial operations with continuous 
quantities. It is through their number sequences that children impose segmentations 
on continuous quantities and reassemble them as measured quantities.

Third, SO’s reorganization hypothesis removes any need to think that the opera-
tion of splitting, as described by Confrey, appears independently of counting. In a 
very real sense, SO’s explication of the reorganization hypothesis gives Confrey’s 
work a developmental foundation. But it does more. As noted by Norton and 
Hackenberg (Chap. 11), the splitting operation described by Confrey is not suffi-
cient for children to generate the highest level of fraction reasoning described by 
SO. More is required, and SO give a compelling argument for what that is.

Next Steps

Norton and Hackenberg (Chap. 11) give a highly useful analysis of potential con-
nections between SO’s research on fractions with other research programs in the 
development of algebraic and quantitative reasoning. My hope is that SO’s research 
develops another set of connections – with pedagogy and curriculum. What sense 
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might teachers make of the reorganization hypothesis? What reorganizations must 
they make to understand it and to use it? What professional development structures 
could help them understand and use it? How could the reorganization hypothesis 
inform the development of curriculum that in turn would support teachers as they 
attempt to actualize the reorganization hypothesis? I look forward to SO and proté-
gés giving us insight into these questions.

Tempe, Arizona, USA Patrick W. Thompson
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