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INTRODUCTION

In a wide variety of problems one has to treat uncertain or incomplete in-
formation. Some kind of exact science is needed to describe and understand
existing methods, and to develop new attempts. Especially in applications of
computer science, this is a fundamental problem. To handle such information,
Zadeh [44], and simultaneously Klaua [22, 23], introduced the concept of fuzzy
sets and relations. In contrast to usual sets, fuzzy sets are characterized by a
membership relation taking its values from the unit interval [0, 1] of the real
numbers. After its introduction in 1965 the theory of fuzzy sets and relations
was ranked to be some exotic field of research. The success during the past
years even with consumer products involving fuzzy methods causes a rapidly
growing interest of engineers and computer scientists in this field. Nevertheless,
Goguen [12] generalized this concept in 1967 to L-fuzzy sets and relations for
an arbitrary complete Brouwerian lattice L instead of the unit interval [0, 1] of
the real numbers. He described one of his motivating examples as follows:

A housewife faces a fairly typical optimization problem in her grocery shop-
ping: she must select among all possible grocery bundles one that meets as
well as several criteria of optimality, such as cost, nutritional value, quality,
and variety. The partial ordering of the bundles is an intrinsic quality of this
problem. (Goguen [12] 1967)

It seems to be unnatural – comparing apples to oranges – to describe the
criteria of optimality by a linear ordering as the unit interval. Why should the
nutritional value of a given product be described by 0.6 (instead of 0.65, or
any other value from [0, 1]), and why should a product with a high nutritional
value be better than a product with high quality since those criteria are usually
incomparable?

This observation has led to the theory of multiobjective or multicriteria opti-
mization problems (cf. [13]). Instead of combining several criteria into a single
number, and choosing the highest value, the concept of Pareto optimailty is
used. In this approach the elements that are not dominated are taken for fur-
ther considerations. Here an element x is said to dominate an element y if the
value xi for each objective i is greater than or equal to the corresponding value
yi of y. Traditional techniques of optimization and search have been applied
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in this area. Recently, even genetic algorithms have been used to search for
multicriteria optima (e.g., [30, 31]).

One important notion within fuzzy theory is 0-1 crispness. A 0-1 crisp set or
relation is described by the property that their characteristic function supplies
either the least element 0 or the greatest element 1 of the unit interval [0, 1] or
more general the complete Brouwerian lattice L. The class of 0-1 crisp fuzzy
sets or relations may be seen as the subclass of regular sets or relations within
the fuzzy world. Especially in applications, this notion is fundamental. We want
to demonstrate this by considering two examples.

In fuzzy decision theory the basic problem is to select a specific element from
a fuzzy set of alternatives. Therefore, several cuts are used [9, 24]. Basically,
an α-cut of a fuzzy set M is a set N such that an element x is in N if, and
only if, x is in M with a degree ≥ α. Analogously, an α-cut of a fuzzy relation
R is a crisp relation S such that a pair of elements is related in S if, and only
if, they are related in R with a degree ≥ α. Some variants of this notion may
also be used. By definition, these cut operations are strongly connected to the
notion of crispness. In particular, using the notion of crispness, one may define
cut operations, and a cut operation naturally implies a notion of crispness.

Another example might be the development of a fuzzy controller. Usually
the output of the controller has to be a 0-1 crisp value since it is used to
control some nonfuzzy physical or software system. Therefore, a procedure,
called defuzzification, is applied to transform the fuzzy output into some 0-1
crisp value. This list of examples may be continued. The bottom line is that a
convenient theory for L-fuzzy relations should be able to express the notion of
crispness.

Today, fuzzy theory as well as its application is usually formulated as a
variation of set theory or some kind of many-valued logic (e.g., cf. [2, 14, 26]).
Although many algebraic laws are developed, these formalizations are not alge-
braic themselves. But an algebraic description would have several advantages.
Applications of fuzzy theory may be described by simple terms in this language.
In this way, we get in some sense a denotational semantics of the application,
and, hence, a mathematical theory to reason about notions as correctness. One
may prove such properties using the calculus of the algebraic theory, which is
quite often more or less equational. Furthermore, this denotational semantics
may be used to get a prototype of the application.

On the other hand, the calculus of binary relations has been investigated
since the middle of the nineteenth century as an algebraic theory for logic and
set theory [36, 37]. A first adequate development of such algebras was given
by de Morgan and Peirce. Their work has been taken up and systematically
extended by Schröder in [34]. More than 40 years later, Tarski started with the
exhaustive study of relation algebras [35], and more generally, Boolean algebras
with operators [17].

The papers above deal with relational algebras presented in their classical
form. Elements of such algebras might be called quadratic or homogeneous;
relations over a fixed universe. Usually a relation acts between two different
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kinds of objects, e.g., between customers and products. Therefore, a variant of
the theory of binary relations has evolved that treats relations as heterogeneous
or rectangular . A convenient framework to describe such kind of typing is given
by category theory [3, 10, 27, 28, 32, 33].

There are some attempts to extend the calculus of relations to the fuzzy
world. In [21] the concept of fuzzy relation algebras was introduced as an alge-
braic formalization of fuzzy relations with sup-min composition. These algebras
are equipped with a semiscalar multiplication, i.e., an operation mapping an
element from [0, 1] and a fuzzy relation to a fuzzy relation. In the standard
model this is done by componentwise multiplication of the real values. Fuzzy
relation algebras and their categorical counterpart [11], so-called Zadeh cate-
gories, constitute a convenient algebraic theory for fuzzy relations. Using the
semiscalar multiplication it is also possible to characterize 0-1 crisp relations.
Unfortunately, there is no way to extend or modify this approach for L-fuzzy
relations since for an arbitrary complete Brouwerian lattice such a semiscalar
multiplication may not exist.

Another approach is based on Dedekind categories and was introduced in
[27]. It was shown that the class of L-fuzzy relations constitutes such a cate-
gory. Unfortunately, the notion of 0-1 crispness causes some problems. Using
the notion of scalar elements, i.e., a set of partial identities corresponding to the
lattice L, several notions of crispness in an arbitrary Dedekind category were
introduced in [11, 20]. It was shown that the notion of s-crispness as well as the
notion of l-crispness coincides with 0-1 crispness under an assumption concern-
ing the underlying lattice. This assumption is fulfilled by all linear orderings,
e.g., the unit interval. Unfortunately, it was also shown that both classes of
crisp relations are trivial if the underlying lattice is a Boolean lattice. Actually,
it can be shown (Theorem 5.1) that the notion of 0-1 crispness cannot be for-
malized in the language of Dedekind categories, i.e., this theory is too weak to
express this property. Therefore, an extended theory is needed: the theory of
Goguen categories.

In this book, we want to focus on Goguen categories introduced in [40] and
some weaker structures as a convenient algebraic/categorical framework for L-
fuzzy relations and their application in computer science. In particular, we are
interested in the development process of fuzzy controllers using the method of
Mamdani [25]. One major problem is to ensure totality of the controller, i.e.,
the controller should produce an output value for each input. If the controller
is described by a relation R within a Goguen category, this property can be
proved by showing I � R;R�, where I is the identity relation, ; is composition
of relations, and R� is the converse of R. In most applications the controller
is constructed by several components, which are combined using t-norms and
t-conorms. The actual choice of the norms and their parameters is often done
by experts using their experiences. Especially in complex applications, such a
development process might easily lead to “holes” in the domain of the con-
troller, i.e., to a partially defined controller. On the other hand, the relational
description R of the controller can be parametric in those norms. From a generic
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proof of R being total (which is necessarily parametric too) we can generate a
set of conditions that have to be satisfied in order to ensure the totality of R.
The expert may now select a convenient set of norms and parameters fulfilling
these conditions. The controller generated is guaranteed to be total. We will
give an example of the development process sketched above in Chapter 6.

This book is organized as follows. In Chapters 1 and 2, we will introduce
several mathematical notions as sets and lattices. The basic properties of L-
fuzzy relations are investigated in Chapter 3. Afterwards, we will concentrate on
the categorical description of relations, i.e., we will introduce several categories
of relations in Chapter 4. Furthermore, their basic properties are proved, and
their connections to L-fuzzy relations are studied. Chapter 5 is dedicated to
Goguen categories and several weaker structures. We will prove some basic
properties of those kinds of categories, focus on their representation theory,
concentrate on derived connectives from a generalized notion of t-norms and
t-conorms, and investigate the validity of equations in the substructure of crisp
relations. In the last chapter we will give an applications of Goguen categories in
computer science. We want to construct an L-fuzzy controller with respect to a
given set of rules. This controller is not based on the unit interval. Furthermore,
we will construct the controller without deciding in advance which norms and
parameters should be used. From a generic proof of the totality of the controller
we derive properties that can be used by an engineer to finally decide about
those parameters.

The writing of this book extended over almost 5 years. The early version
grew out of the Habilitation thesis of the author in Munich, in 2003. In the
following years several parts were revised and extended. In particular, Sections
5.1–5.4 were added in order to provide a more detailed overview of categories
of L-fuzzy relations.

The author would like to thank Gunther Schmidt and Yasuo Kawahara for
their constant support during the Habilitation. Ivo Düntsch has to be thanked
not only as a colleague, but also as a source of suggestions and advice.

The RelMiCS (Relational Methods in Computer Science) community was
not only a source of useful comments and criticism, but also of friendship.

The first draft of this book was written in Munich. The author would like
to thank the Department of Computer Science of the University of the Federal
Armed Forces, Munich, Germany, for its support during this phase. The revision
and the writing of the final version took place in St. Catharines. The author
would like to thank the Department of Computer Science of Brock University,
St. Catharines, Canada, for its support during the later phase.

Last but not least, a special thanks goes to Ewa Orlowska, who suggested
to publish the result of the Habilitation in a book.



1
SETS, RELATIONS, AND FUNCTIONS

Sets are fundamental in mathematics. In this chapter we briefly introduce the
concepts and notations from set theory we will use throughout the book. We
assume that the reader is familiar with the basic concepts of set theory. He may
use some kind of naive set theory or a formal theory as ZF or ZFC [18], i.e.,
the Zermelo-Fraenkel axioms of set theory. As usual, we denote the fact that
“x is an element of a set A” by x ∈ A. The set with no elements is called the
empty set , and is denoted by ∅. If every element of a set A is also an element
of the set B, we say A is a subset of B denoted by A ⊆ B.

The set comprehension “the set of all elements of a set A fulfilling a predicate
P” is denoted by {x ∈ A | P(x)}. If it is clear from the context or if it is
insignificant which A is meant, we simply write {x | P(x)}.

Union, intersection, and set difference are defined as usual:

union A ∪ B := {x | x ∈ A or x ∈ B},
intersection A ∩ B := {x | x ∈ A and x ∈ B},
set difference A \ B := {x | x ∈ A and x �∈ B}.

The complement A of a set A in respect to a set B ⊇ A is just the set differ-
ence B \ A. The binary operations union and intersection may be generalized
to an arbitrary set of sets as argument. Suppose Ai for i ∈ I are sets. Then,

union
⋃

i∈I

Ai := {x | ∃i ∈ I : x ∈ Ai},

intersection
⋂

i∈I

Ai := {x | ∀i ∈ I : x ∈ Ai}.

1
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The Cartesian product of two sets A and B is the set of all pairs (x, y) with
x ∈ A and y ∈ B, and is denoted by A×B. The set of all subsets of A is called
the power set of A, and is denoted by P(A).

A binary relation R between two sets A and B is an element of P(A × B).
A is called the source and B the target of R. If A = B, the relation R is also
called an endorelation or homogeneous. To indicate that a binary relation R
has source A and target B we usually write R : A → B.

Apart from the set theoretic operations, we consider two further operations
on binary relations. Let R be a relation between A and B and S between B
and C. Then we define

conversion RT := {(y, x) | (x, y) ∈ R},
composition R ◦ S := {(x, z) | ∃y ∈ B : (x, y) ∈ R and (y, z) ∈ S}.

Due to the definition above, a composition Q ◦ R has to be read from the
left to the right, i.e., first Q, and then R. We usually write R(x, y) instead of
(x, y) ∈ R. Notice that RTT = R, and that composition is associative, i.e., for all
relation Q : A → B,R : B → C and S : C → D we have (Q◦R)◦S = Q◦(R◦S).
The identity relation IA on a set A is defined as the set {(x, x) | x ∈ A}. Then
for all relations R : A → B we have R = IA ◦ R = R ◦ IB .

The range or image ran(R) of a relation R : A → B is defined as the set
{y ∈ B | ∃x ∈ A : R(x, y)}. Dually, the domain dom(R) of R is defined as the
set {x ∈ A | ∃y ∈ B : R(x, y)}. Obviously, we have dom(R) = ran(RT) and
ran(R) = dom(RT).

A function f from A to B is a binary relation f : A → B which is

univalent f(x, y1) and f(x, y2) implies y1 = y2 for all x ∈ A and y1, y2 ∈ B,
total for all x ∈ A there exists some y ∈ B so that f(x, y).

Both properties may be expressed using the relational constructions. The
first property is equivalent to fT ◦ f ⊆ IB , and the second to IA ⊆ f ◦ fT. The
image of a function f : A → B will also be denoted by f(A). As indicated above,
arbitrary binary relations are denoted by uppercase and functions by lowercase
letters. If f is a function, we usually write f(x) to indicate the (necessarily
unique) y so that f(x, y). The set of all functions from A to B will be denoted
by A → B.

A relation R : A → B is called

(1) injective iff1 R(x1, y) and R(x2, y) implies x1 = x2 for all x1, x2 ∈ A and
y ∈ B,

(2) surjective iff for all y ∈ B there exists some x ∈ A so that R(x, y),

(3) bijective iff it is injective and surjective.

1We use the phrase “iff” as an abbreviation for “if and only if.”
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Obviously, a relation is injective iff RT is univalent, surjective iff RT is total,
and bijective iff RT is a function. A bijective function is also called a bijection.
For historical reasons, the converse of a bijection f is denoted by f−1. Notice
that we have

f−1(f(x)) = x and f(f−1(y)) = y

for all bijections f : A → B and x ∈ A, y ∈ B.
The cartesian product construction is associative up to a bijection, i.e., the

function αA,B,C : (A × B) × C → A × (B × C) defined by αA,B,C((a, b), c) =
(a, (b, c)) is bijective for arbitrary sets A,B, and C. We define n-ary products
by iterating binary products. Due to the associativity this is well-defined.

Given an n-ary function f : A1 × · · · ×An → B we will use the extended set
comprehension scheme {f(x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An} as an abbrevia-
tion for

{y | ∃x1 ∈ A1 · · · ∃xn ∈ An : y = f(x1, . . . , xn)}.
The concept of a Cartesian product of sets may be further generalized using

functions. Let Ai for i ∈ I be sets. The I-indexed product
∏

i∈I

Ai of the sets

Ai is defined as the set of all functions f from I to
⋃

i∈I

Ai so that f(i) ∈ Ai

for all i ∈ I. For a finite set I = {1, . . . , n} we get the usual n-ary product of
A1, . . . , An. Notice, if Ai = Aj =: A for all i, j ∈ I, i.e., all components of the
product are equal,

∏

i∈I

Ai is just I → A.

We introduce some notations for commonly known sets:

B set of Boolean values {t, f} or {0, 1} (t = 1 =̂ true, f = 0 =̂ false),
N set of the natural numbers {0, 1, 2, . . .},
N

∞ set of the natural numbers with an additional greatest element ∞,
R set of real numbers,
[0, 1] = {x ∈ R | 0 ≤ x ≤ 1} unit interval of real numbers.

The concept of a homomorphism between structured sets, i.e., sets with some
operations and/or relations defined on them, is usually somewhat informal.
One may obtain a formal definition using the theory of universal algebras.
In this book a homomorphism is a function reflecting the structure of the
corresponding sets. For example, a homomorphism between the semigroups
(G1,+1, 01) and (G2,+2, 02) is a function f : G1 → G2 respecting the group
operation + and the neutral element 0, i.e., f(x +1 y) = f(x) +2 f(y) for all
x, y ∈ G1 and f(01) = 02. As usual, a bijective homomorphism f so that f−1

is also a homomorphism is called an isomorphism. In this situation the source
and the target of f are called isomorphic.


