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PREFACE

“We are never devoid of some hope that we shall eventually know everything. It may often 
be salutary, nevertheless, to recognize the remoteness of that time and to take stock of our 
ignorance”.

N.L. Bowen–

1947 Presidential address to the Geological Society of America

There is a vast amount of published research on granite and we cannot claim to be
familiar with it all. However, we are aware of the recent developments with respect
to attempts at reaching a consensus on the problem of granite origin. With the con-
cept of granitisation apparently dormant, if not dead, a paradigm of granite mag-
matism, i.e. melting, segregation, ascent and emplacement, has strengthened over
the last 15 years. The combined research presented in this book describes a viable
alternative mechanism of granite formation to this widely accepted intrusion
model, namely, in-situ melting–intracrustal convection.

The core idea of the in situ melting origin of granite was formulated by GC,
who worked as a member of one of the geological teams engaged in mineral
prospecting and regional mapping in SE China between 1971 and 1977. It started
from being unable to obtain satisfactory answers to the questions; if ore-miner-
als of hydrothermal deposits are not derived from granite magma, why are they
found in their host rocks? If the ore-minerals are from granite magma, why are
large granite masses barren of ore deposits? During seven year’s of study at Sun
Yat-sen University since 1977, GC spent most of his spare time in the university
library trying to find an acceptable solution, but failed. GC gradually realised
that perhaps what was generally believed about the origin of granite needed revi-
sion. So began an intensive 20-year study from which GC came to the conclusion
that granite is produced and remains within the region of crustal melting.
Collaboration on this idea began with RG in 2002 who was then at Freiburg
University, Germany, and has been at Sun Yat-sen University since October 2005.

In the following pages, we demonstrate that thermal convection within a mid-
upper crustal partial melting zone is essential for the formation of granite magma
and that without convection partial melting of crustal rocks generates
migmatites, not granite batholiths. Granite is layer-like on a crustal scale and the

ix
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shape and size of individual granite bodies merely reflects the geometric rela-
tionship between the irregular upper part of a granite layer and the erosion sur-
face, rather than the volume of intruded magma. Chemical and isotopic
compositions of granites are considered to reflect processes operating within the
magma system rather than unknown deep sources. Formation and crystallisation
of a crustal magma layer results in reorganization and redistribution of elements
within the crust, to form both granite and their related hydrothermal mineral
deposits. The in situ melting–intracrustal convection model of granite origin
integrates the two-knowledge systems related to continental geology and plate
tectonics and explains related geological, geochemical and geophysical observa-
tions. The geochemical fields of elements established on the basis of both the in situ
melting–intracrustal convection model and periodic table illustrates the harmony
and unity between the microcosm and macrocosm of the natural world.

While the views advanced in this book differ from a number of traditional ideas
in geology, the same evidence used to support these ideas is also adopted to
strengthen our hypothesis. Our main aim is to offer another way of not only look-
ing at granite but the Earth in the hope that this will stimulate further thought and
study. As such, we hope that the book will be of interest to both professional
and student Earth scientists.

Guo-Neng Chen and Rodney Grapes
Sun Yat-sen University

Guangzhou (Canton)
China

December 2006

x PREFACE
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CHAPTER 1

INTRODUCTION

1.1. ROCK GENESIS AND ITS RELATIONSHIP 
TO GEOSYSTEMS

Rocks that form the outer part of the Earth, the crust, provide a record of con-
stant change in the Earth’s environment with time in relation to the movement
and/or reaction of rock material during their formation. Thus, understanding the
genesis of rocks is the foundation of the geological knowledge system. The
nature, size, shape, properties and arrangement of constituent minerals gives rise
to the diversity of rocks and their origin so that the challenge of geology is in
determining their material source and mechanism of formation. Among the
three kinds of rocks, igneous, sedimentary and metamorphic, the material source
of metamorphic rocks need not be considered because its predecessor is also
rock. Igneous rocks derived by crystallisation of liquids can be divided into mafic
and felsic end members represented by gabbro/basalt and granite/rhyolite, respec-
tively, with different sources.

1.1.1. Sedimentary Rocks and Continental Geology

The genesis of sedimentary rocks that form the outermost part of the solid earth
was early clarified by Lyell (between 1830 and 1833; 1868) in his Principles of
Geology and by the geosynclinal hypothesis of Dana (1873), i.e. sediments in
basins are derived from weathering and erosion of rocks in mountains or other
uplifted areas, lithification of the sediments during burial, return of the new sed-
imentary rocks to the Earth’s surface by tectonic processes, their subjection to
renewed weathering and erosion, and so on as shown in Fig. 1.1. The relation-
ship of endogenic/exogenic forces of the Earth, and the sedimentary rock cycle,
demonstrate environmental variation and related material transportation in
terms of two different tectonic settings, areas of uplift and subsidence. Without
knowledge of this relationship, most theories of continental geology would not
exist, and it is the main reason why the geosynclinal hypothesis remained funda-
mental in geology for over a century.

1
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1.1.2. Basaltic Rocks and Plate Tectonics

Basaltic rocks constitute the oceanic crust, and probably a significant part of
the lower continental crust (Sima). From the work of Holmes who put for-
ward the mantle convection hypothesis in the 1920’s to that of Dietz (1961)
and Hess (1962) who advanced the idea of ocean-floor spreading, the genesis
of oceanic basalt and the corresponding material cycling of the mantle were
successfully explained by geology, i.e. mafic magma from the mantle erupts
from mid-ocean ridges to form the basaltic rocks of the ocean crust which
moves away from the ridge axes, and is returned to the mantle by subduction
(Fig. 1.2). Without this model, the plate tectonics hypothesis would not exist
and it was probably the main reason why Wegener’s hypothesis of continental
drift was eventually accepted because it provided a mechanism for large-scale
crustal movement.

1.1.3. ‘Whence the Granites’

The genetic models of sedimentary and basaltic rocks explain environmental
variables and material transport of the continents in relation to endo–exogenic
forces, and energy/material flow in the Earth’s interior in relation to tectonic plate

2 CHAPTER 1

Figure 1.1. Genetic model of sedi-
mentary rock formation and associ-
ated material cycle.

Figure 1.2. Genetic model of basalt
and material cycling of the mantle.
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movement. These models form the core theories of the two knowledge systems,
i.e. Continental Geology and Plate Tectonics. However, as shown in Fig. 1.3,
neither the formation process of sedimentary rock nor that of basalt produces
granite that is considered to be distributed between the shallow crustal metased-
imentary rocks and the lower continental crust.

Granite that belongs to the continent composes the fundamental part of the
upper crust and is closely related to tectonism, metamorphism and mineralisa-
tion of the continental crust. The origin of granite, however, has been the subject
of much debate since the eighteenth century when the science of geology was
in its infancy. Accounts of the ‘granite controversy’ and the origin of granite
can be found in Gilluly (1948), Pitcher (1993) and Young (2003) and will not
be addressed here except to say that since the advent of plate tectonics in the
1960’s, a framework has been provided in which the different interpretations
of granite genesis can be re-explored and in many cases reconciled, although
debate still continues. A misleading idea related to the basalt magma fractional
crystallisation-differentiation scheme of Bowen (1914, 1922, 1948) is to combine
the order of mineral crystallisation to the formation of basic to acid series igneous
rocks. Only a small amount of residual granite liquid is generated by this process
and this experimental evidence is clearly at odds with field evidence for the
abundance of granite (Holmes 1926; Read 1957). While the mineral reaction
series can be applied to the crystallisation of different magma compositions as
recorded by their mineral textures, the first rocks formed are not necessarily
mafic, and the last are not always felsic, because the rock crystallised from a
melt depends on the composition of the melt and not the order of mineral
crystallisation (Kennedy 1933). In this respect, the comment on Bowen’s idea by
Walton (1960) is relevant,

“Not that there was anything wrong with Bowen’s chemistry or his application of
it to the fractionation of basaltic magma; it was and will still remain a keystone
of petrology. But there was a crucial tacit assumption involved in tying igneous

INTRODUCTION 3

Figure 1.3. Cartoon showing spatial distribution of granite in the continental crust and relationship
of the two material cycling processes known from geology.
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theory so rigidly to a single model in which the evolution of most igneous rocks
is dependent on the upward intrusion of basaltic magma into a level of the crust
where it cools, crystallizes, and fractionates. The same chemistry can be applied
to other models”.

The granite controversy that raged between granitisers such as H.H. Read and
magmatists such as N.L. Bowen in the late 1940’s (Gilluly 1948) has effectively
ended and most earth scientists would now agree that granites are of magmatic
origin. In answering the question, how does granite form? or in Bowen’s words
‘Whence the granites?’ the overwhelming opinion of most earth scientists is that
granite is derived by partial melting of crustal rocks of various compositions. This
idea essentially brings together the earlier competing explanations of granite gen-
esis; magmatic (granites are igneous rocks resulting from the crystallisation of
magma) and metamorphic (granites are the result of a dry or wet granitisation
process that transformed sialic sedimentary rocks into granite), because granites
are the result of ultra-metamorphism involving melting (anatexis) of crustal rocks.
This explanation has important implications for the origin and chemical differen-
tiation of the Earth’s crust in relation to the source and evolution of thermal
regimes, protolith composition, how much granite can be produced, over what
time and at what temperature, the amount and source of available water needed,
tectonic processes and plate tectonic settings—a truly holistic association.

1.2. GRANITES, MIGMATITES AND GRANITE PROBLEMS

1.2.1. Definitions

1.2.1.1. Granite

The maxim ‘there are granites and granites’ originally coined by H. H. Read
remains just as true today as it did in 1933. In fact the number of ‘granite types’
has proliferated from at least 20 schemes that have been proposed to classify them
(see Barbarin 1990, 1999 for summary, and Frost et al. 2001 for an appraisal of
the more commonly used classification schemes). The most widely used classifi-
cation schemes are geochemical and/or generic-alphabetical, i.e. S-, I-, M-, A-,
and C-type granites (S = sedimentary source; I = igneous source; M = mantle
source; A = anorogenic; C = charnockitic); calc-alkaline, alkaline, peralkaline,
peraluminous, metaluminous granites; or are related to tectonic setting: ‘orogenic’
(oceanic and continental volcanic arc; continental collision), ‘transitional’ (post-
orogenic uplift/collapse), and ‘anorogenic’ (continental rifting, hot spot, mid-ocean
ridge, oceanic island) granites.

In this book the broad terms ‘granitoid’, ‘granitic rocks’ or simply ‘granite’ are
used to mean quartz-bearing (>60 wt % SiO2) plutonic igneous rocks in general.
We adopt (or return to) where necessary a non-genetic classification of granitic
rocks based on field and petrographic observation in that we use well-established
rock names, e.g. granite, adamellite, granodiorite, tonalite, monzonite, diorite,
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