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Preface

This book is devoted to homogenization problems for partial differential equations
describing various physical phenomena in microinhomogeneous media. This direc­
tion in the theory of partial differential equations has been intensively developed for
the last forty years; it finds numerous applications in radiophysics, filtration theory,
rheology, elasticity theory, and many other areas of physics, mechanics, and engi­
neering sciences.

A medium is called microinhomogeneous if its local parameters can be described
by functions rapidly varying with respect to the space variables. We will always
assume that the length scale of oscillations is much less than the linear sizes of the
domain in which a physical process is considered but much greater than the sizes of
molecules, so that the process can be described using the differential equations of
the mechanics of solids. These differential equations either have rapidly oscillating
coefficients (with respect to the space variables) or are considered in domains with
complex microstructure, such as domains with fine-grained boundary [112] (called
later by the better-known term strongly perforated domains). The microstructure is
understood as the local structure of a domain or the coefficients of equations in the
scale of microinhomogeneities.

Obviously, it is practically impossible to solve the corresponding boundary (ini­
tial boundary) value problems by either analytical or numerical methods. However,
if the microscale is much less than the characteristic scale of the process under inves­
tigation (e.g., the wavelength), then it is possible to give a macroscopic description
of the process. If it is the case, the medium usually has stable characteristics (heat
conductivity, dielectric permeability, etc.), which, in general, may differ substantially
from the local characteristics. Such stable characteristics are referred to as homoge­
nized, or effective, characteristics, because they are usually determined by methods
of the homogenization theory for differential equations or the relevant mean field
methods, effective medium methods, etc.

The term homogenization is associated, first of all, with methods of nonlin­
ear mechanics and ordinary differential equations developed by Poincare, Krylov,
Bogolyubov, and Mitropolskii (see, e.g., [21, 123]). For partial differential equations,
homogenization problems have been studied by physicists from Maxwell's times,
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but they remained for a long time outside the interests of mathematicians. However,
since the mid I 960s, homogenization theory for partial differential equations began
to be intensively developed by mathematicians as well, which was motivated not
only by numerous applications (first of all, in the theory of composite media [142])
but also by the emergence of new deep ideas and concepts important for mathe­
matics itself. Currently, there is a great number of publications devoted to mathe­
matical aspects of homogenization such as asymptotic analysis, two-scale conver­
gence, G-convergence, and r -convergence. Making no claim to cite all of the avail­
able monographs on the subject, we would like to mention the books by Allaire [3],
Bakhvalov and Panasenko [9], Bensoussan, Lions, and Papanicolaou [13], Braides
and Defranceschi [26], Cioranescu and Donato [42], Cioranescu and Saint Jean
Paulin [45], Dal-Maso [46], Marchenko and Khruslov [113], Oleinik, Iossifiyan, and
Shamaev [131], Pankov [133], Sanches-Palencia [148], Skrypnik [161],
Zhikov, Kozlov, and Oleinik [181].

In the mathematical description of a physical phenomenon in microinhomoge­
neous media, the local characteristics depends on a small parameter £, which is the
characteristic scale of the microstructure. It is the asymptotic analysis, as £ ---+ 0, of
the problem that leads to the homogenized model of the process. It turns out that the
limits of solutions of the original problem can be described by certain new differen­
tial equations with coefficients smoothly varying in simple domains. These equations
constitute a mathematical model of the physical process in a microinhomogeneous
medium, their coefficients being effective characteristics of the medium. For exam­
ple, in the simplest case, the local characteristics of a microinhomogeneous medium
are described by periodic functions of the form aU), X E JRn. The corresponding
effective characteristics appear to be independent of x; moreover, the homogenized
equations have the same structure as the original ones. Therefore, in this case, the
main problem of mathematical modeling is to determine the coefficients of the ho­
mogenized equations; these coefficients can then be viewed as the effective parame­
ters of the medium. This situation is typical for various microinhomogeneous media
encountered in nature.

However, there exist media with more complicated microstructure, the macro­
scopic description of which cannot be reduced to the determination of the effective
characteristics only, since homogenization leads to equations substantially different
from the original ones. Such a situation usually occurs when the microstructure is
characterized by several small parameters, of different order of smallness; artificial
composite materials as well as some natural media provide the relevant examples.
The corresponding homogenized models differ substantially from the original, "mi­
croscopic," ones; depending on the microstructure, they appear to be either nonlocal
models or multicomponent models or models with memory. This book is basically
devoted to the study of structure of microinhomogeneous media leading to "nonstan­
dard" models; therefore, it has almost no intersections with the monographs cited
above, except [113]. We began to write this book (which was initially thought of as a
revised edition of [113]) in the late 1980s; but since then, new results have been ob­
tained, which now constitute the main contents of the book, the needed results from
rI 13] being presented in more convenient fashion.
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In the book, we restrict ourselves mainly to physical phenomena described by
the Dirichlet and Neumann boundary value problems in strongly perforated domains
and by linear elliptic and parabolic differential equations with rapidly oscillating co­
efficients; but the developed methods can be applied as well in the study of boundary
value problems of elasticity theory, electrodynamics, Fourier boundary value prob­
lems, nonlinear problems, etc.
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1

Introduction

In contrast to the majority of available monographs on homogenization theory deal­
ing with media of relatively simple microstructure (such as periodic, or close to
periodic, structures depending on a single small parameter), in this book we study
phenomena in media of arbitrary microstructure characterized by several small pa­
rameters (or even more complicated media). For such media, homogenized models
of physical processes may have various forms differing substantially from an original
model. In order to give some ideas about the possible types of models and the topol­
ogy of microstructure of the corresponding media, in this introduction we consider
typical examples of microstructures leading, in the limit, to particular homogenized
models. To be specific, we consider a nonstationary heat conduction process (a non­
stationary diffusion), described by the heat equation, in microinhomogeneous media
of various types.

In the main part of the book (Chapters 2-8), we will consider problems in the
general setting and present necessary and sufficient conditions for the convergence
of solutions of the original problems to solutions of the corresponding homogenized
equations. These condition are formulated in terms of local "mean" characteristics
of the microstructure ("mesocharacteristics"), which are then used to express the
coefficients of the limiting equations. These characteristics are introduced in cubes
("mesocubes"), which are small relative to the whole domain but at the same time
are large relative to the microscale. Since we define the mesocharacteristics following
the penalty method and therefore they may seem to be introduced somewhat artifi­
cially, we present in this introduction a certain motivation for our approach. Here we
also discuss, without proofs, the basic notions needed for the characterization of gen­
eral microstructures such as the notions of strongly connected domains and weakly
connected domains.

1.1 The Simplest Homogenized Model

We begin with the study of a two-phase medium consisting of a bulk homogeneous
material in which small grains (inclusions) of another homogeneous material are
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embedded. More precisely, let Q and G be bounded domains in the n-dimensional
space JR./I (n 2: 2) with smooth boundaries aQ and aG, respectively, G (the closure
of G) lying in the parallelogram TI = {x E JR./I : jxil < ¥}. Construct the disjoint
domains

n

G je = £G + £ L hkm jkek, j = 1, 2, ... ,
k=1

(1.1)

arranged periodically in JR."; here m jk are entire numbers, {ek }:=I is an orthonormal
basis in JR.n, and £ > 0 is a small parameter.

Assume that the bulk material occupies the domain QOe = Q \ Uj G je, whereas
the inclusions occupy the domain Ql e = Uj G je, where the union is taken over
a finite number of domains G je lying entirely in Q, i.e., G je C Q for j =
1,2, ... , N(£) < 00; see Figure 1.1.

Q

G.
)E

o
00000

----[- 0 0 0 0 0
h2 E

.----- 0 0 0 0 0 0

00000
000

Fig. 1.1.

Denote by Qk and bk (k = 0, 1) the heat conductivity and heat capacity, re­
spectively, of the bulk material (k = 0) and the inclusions (k = 1), i.e., the local
characteristics of the phases.

A nonstationary heat conduction process in such a medium can be described by
the temperature function ue(x, t) (x E Q, t > 0), which, assuming that there are no


