Mariano Giaquinta Giuseppe Modica

Mathematical Analysis

Linear and Metric Structures and Continuity

Progress in Mathematical Physics

Volume 46

Editors-in-Chief

Anne Boutet de Monvel, Université Paris VII Denis Diderot Gerald Kaiser, Center for Signals and Waves, Austin, TX

Editorial Board

C. Berenstein, University of Maryland, College Park
Sir M. Berry, University of Bristol
P. Blanchard, Universität Bielefeld
M. Eastwood, University of Adelaide
A.S. Fokas, University of Cambridge
D. Sternheimer, Université de Bourgogne, Dijon
C. Tracy, University of California, Davis

Vladimir A. Marchenko Evgueni Ya. Khruslov

Homogenization of Partial Differential Equations

Translated from the original Russian by M. Goncharenko and D. Shepelsky

Birkhäuser Boston • Basel • Berlin Vladimir A. Marchenko Evgueni Ya. Khruslov B. Verkin Institute for Low Temperature Physics and Engineering Mathematical Division 61103 Kharkov Ukraine Translated by: Mariya Goncharenko Dmitry Shepelsky B. Verkin Institute for Low Temperature Physics and Engineering Mathematical Division 61103 Kharkov Ukraine

Mathematics Subject Classicifications (2000): 35B27, 35Bxx, 35J25, 35J40, 35K20, 35P15, 36Pxx, 74Q05, 74Q10, 74Q15, 74Qxx

Library of Congress Control Number: 2005935041

ISBN-10 0-8176-4351-6 ISBN-13 978-0-8176-4351-5 eISBN 0-8176-4468-7

Printed on acid-free paper.

©2006 Birkhäuser Boston Based on the original Russian edit

Based on the original Russian edition, усредненные модели микронеоднородных сред. Киев: Наук. Думка, 2005

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (TXQ/EB)

987654321

www.birkhauser.com

Preface

This book is devoted to homogenization problems for partial differential equations describing various physical phenomena in microinhomogeneous media. This direction in the theory of partial differential equations has been intensively developed for the last forty years; it finds numerous applications in radiophysics, filtration theory, rheology, elasticity theory, and many other areas of physics, mechanics, and engineering sciences.

A medium is called *microinhomogeneous* if its local parameters can be described by functions rapidly varying with respect to the space variables. We will always assume that the length scale of oscillations is much less than the linear sizes of the domain in which a physical process is considered but much greater than the sizes of molecules, so that the process can be described using the differential equations of the mechanics of solids. These differential equations either have rapidly oscillating coefficients (with respect to the space variables) or are considered in domains with complex microstructure, such as *domains with fine-grained boundary* [112] (called later by the better-known term *strongly perforated domains*). The microstructure is understood as the local structure of a domain or the coefficients of equations in the scale of microinhomogeneities.

Obviously, it is practically impossible to solve the corresponding boundary (initial boundary) value problems by either analytical or numerical methods. However, if the microscale is much less than the characteristic scale of the process under investigation (e.g., the wavelength), then it is possible to give a macroscopic description of the process. If it is the case, the medium usually has stable characteristics (heat conductivity, dielectric permeability, etc.), which, in general, may differ substantially from the local characteristics. Such stable characteristics are referred to as homogenized, or effective, characteristics, because they are usually determined by methods of the homogenization theory for differential equations or the relevant mean field methods, effective medium methods, etc.

The term *homogenization* is associated, first of all, with methods of nonlinear mechanics and ordinary differential equations developed by Poincaré, Krylov, Bogolyubov, and Mitropolskii (see, e.g., [21, 123]). For partial differential equations, homogenization problems have been studied by physicists from Maxwell's times, but they remained for a long time outside the interests of mathematicians. However, since the mid 1960s, homogenization theory for partial differential equations began to be intensively developed by mathematicians as well, which was motivated not only by numerous applications (first of all, in the theory of composite media [142]) but also by the emergence of new deep ideas and concepts important for mathematics itself. Currently, there is a great number of publications devoted to mathematical aspects of homogenization such as asymptotic analysis, two-scale convergence, G-convergence, and Γ -convergence. Making no claim to cite all of the available monographs on the subject, we would like to mention the books by Allaire [3], Bakhvalov and Panasenko [9], Bensoussan, Lions, and Papanicolaou [13], Braides and Defranceschi [26], Cioranescu and Donato [42], Cioranescu and Saint Jean Paulin [45], Dal-Maso [46], Marchenko and Khruslov [113], Oleinik, Iossifiyan, and Shamaev [131], Pankov [133], Sanches-Palencia [148], Skrvpnik [161]. Zhikov, Kozlov, and Oleinik [181].

In the mathematical description of a physical phenomenon in microinhomogeneous mediá, the local characteristics depends on a small parameter ε , which is the characteristic scale of the microstructure. It is the asymptotic analysis, as $\varepsilon \to 0$, of the problem that leads to the homogenized model of the process. It turns out that the limits of solutions of the original problem can be described by certain new differential equations with coefficients smoothly varying in simple domains. These equations constitute a mathematical model of the physical process in a microinhomogeneous medium, their coefficients being effective characteristics of the medium. For example, in the simplest case, the local characteristics of a microinhomogeneous medium are described by periodic functions of the form $a\left(\frac{x}{\varepsilon}\right), x \in \mathbb{R}^n$. The corresponding effective characteristics appear to be independent of x; moreover, the homogenized equations have the same structure as the original ones. Therefore, in this case, the main problem of mathematical modeling is to determine the coefficients of the homogenized equations; these coefficients can then be viewed as the effective parameters of the medium. This situation is typical for various microinhomogeneous media encountered in nature.

However, there exist media with more complicated microstructure, the macroscopic description of which cannot be reduced to the determination of the effective characteristics only, since homogenization leads to equations substantially different from the original ones. Such a situation usually occurs when the microstructure is characterized by several small parameters, of different order of smallness; artificial composite materials as well as some natural media provide the relevant examples. The corresponding homogenized models differ substantially from the original, "microscopic," ones; depending on the microstructure, they appear to be either nonlocal models or multicomponent models or models with memory. This book is basically devoted to the study of structure of microinhomogeneous media leading to "nonstandard" models; therefore, it has almost no intersections with the monographs cited above, except [113]. We began to write this book (which was initially thought of as a revised edition of [113]) in the late 1980s; but since then, new results have been obtained, which now constitute the main contents of the book, the needed results from [113] being presented in more convenient fashion. In the book, we restrict ourselves mainly to physical phenomena described by the Dirichlet and Neumann boundary value problems in strongly perforated domains and by linear elliptic and parabolic differential equations with rapidly oscillating coefficients; but the developed methods can be applied as well in the study of boundary value problems of elasticity theory, electrodynamics, Fourier boundary value problems, nonlinear problems, etc.

Acknowledgments

We are grateful to Maria Goncharenko and Dmitry Shepelsky for preparing the text for publication and translating the book into English.

Kharkov, March 2004 Vladimir Marchenko Evgenii Khruslov

Contents

Pre	face		v	
1	Introduction			
	1.1	The Simplest Homogenized Model	1	
	1.2	Nonlocal Homogenized Model	5	
	1.3	Two-Component Homogenized Model	7	
	1.4		10	
	1.5	Homogenized Model with Memory: The Case of Violated Uniform		
			12	
	1.6	Homogenization of Boundary Value Problems in Strongly		
			13	
	1.7	Strongly Connected and Weakly Connected Domains: Definitions		
			18	
		1.7.1 Strongly Connected and Weakly Connected Domains	18	
		1.7.2 Local Mesoscopic Characteristics of Strongly Connected		
		Domains	20	
2	The	Dirichlet Boundary Value Problem in Strongly Perforated		
		• •	31	
	2.1	Method of Orthogonal Projections and an Abstract Scheme for the		
			32	
			32	
			34	
	2.2	Asymptotic Behavior of Solutions of the Dirichlet Problem in		
		Domains with Fine-Grained Boundary		
			42	
		2.2.2 Auxiliary Statements	44	
		2.2.3 Validity of the Assumptions of Theorem 2.3	49	
		2.2.4 Proof of Theorem 2.3	55	
	2.3	The Dirichlet Problem in Domains with Random Fine-Grained		
		Boundary	56	

		2.3.1	Problem Formulation and Main Result	56		
		2.3.2	Assumptions of Theorem 2.3 "in Probability"	58		
		2.3.3	Convergence in Probability of Solutions of Problem			
			(2.23)–(2.24)	63		
3	The	Dirichl	let Boundary Value Problem in Strongly Perforated			
	Don	nains wi	ith Complex Boundary	67		
	3.1	Necess	sary and Sufficient Conditions for Convergence of Solutions			
		of the	Dirichlet Problem	67		
		3.1.1	Problem Formulation and Main Result	67		
		3.1.2	Sufficiency of Conditions 1 and 2	68		
		3.1.3	Necessity of Conditions 1 and 2	77		
		3.1.4	Higher-Order Equations	80		
	3.2	Asym	ptotic Behavior of Solutions of Variational Problems for			
		Nonqu	adratic Functionals in Domains with Complex Boundary	82		
		3.2.1	The Sobolev–Orlicz Spaces: Preliminaries	82		
		3.2.2	Problem Statement and Main Result	84		
		3.2.3	The Proof of Theorem 3.7	86		
	3.3		ptotic Behavior of the Potential of the Electrostatic Field			
			eakly Nonlinear Medium with Thin Perfectly Conducting			
		Filame	ents	96		
4	Stro	ngly Co	onnected Domains	105		
-	4.1		inary Considerations	106		
		4.1.1	On One Property of Lattices with Colored Nodes	106		
		4.1.2	Some Properties of Differentiable Functions	107		
	4.2	Strong	ly Connected Domains	114		
		4.2.1	Convergence and Compactness of Sequences of Functions			
			Given in Varying Domains	114		
		4.2.2	Domains Admitting Extension of Functions	116		
		4.2.3	Domains Admitting Extension of Functions with Small			
			Distortion	121		
	4.3	Strong	ly Connected Domains of Decreasing Volume	125		
		4.3.1	Convergence and Compactness of Sequences of Functions			
			Defined in Domains of Decreasing Volume	125		
		4.3.2	Examples of Domains of Decreasing Volume That Satisfy			
			the Strong Connectivity Condition A	128		
5	The	Neuma	ann Boundary Value Problems in Strongly Perforated			
-	Domains					
	5.1		ptotic Behavior of the Neumann Boundary Value Problems	/		
	. –		ongly Connected Domains	137		
		5.1.1	The Conductivity Tensor: Main Theorem	137		
		5.1.2	Proof of Theorem 5.1	139		
		5.1.3	Convergence of Energies and Flows	145		
			5	-		

		5.1.4	Necessity of Conditions 1 and 2 of Theorem 5.1	147
	5.2	Calcul	ation of the Conductivity Tensor for Structures Close to	
		Period	ic	151
	5.3	Asym	ptotic Behavior of the Neumann Boundary Value Problems	
		in Wea	akly Connected Domains	158
		5.3.1	Weakly Connected Domains	158
		5.3.2	Quantitative Characteristics of Weakly Connected	
			Domains: Main Theorem	160
		5.3.3	Auxiliary Constructions and Statements	163
		5.3.4	Proof of Theorem 5.7	173
		5.3.5	Convergence of Energies and Flows	178
	5.4	Asym	ptotic Behavior of the Neumann Boundary Value Problems	
		in Dor	nains with Accumulators (Traps)	180
		5.4.1	Weakly Connected Domains with Accumulators and Their	
			Quantitative Characteristics: Main Theorem	180
		5.4.2	Auxiliary Constructions and Statements	183
		5.4.3	Proof of Theorem 5.13	189
		5.4.4	A Generalization of Theorem 5.13	196
	5.5	Asymj	ptotic Behavior of the Neumann Boundary Value Problems	
		in Stro	ongly Connected Domains of Decreasing Volume	198
		5.5.1	Quantitative Characteristics of Domains and Main Theorem	198
		5.5.2	Examples	202
				211
6			ary Problems and Spectral Problems	211
6	Non 6.1	Asym	ptotic Behavior of Solutions of Nonstationary Problems in	
6		Asymj Tube I	ptotic Behavior of Solutions of Nonstationary Problems in Domains	211
6		Asymı Tube I 6.1.1	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections	211 211
6		Asymj Tube I 6.1.1 6.1.2	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem	211 211 213
6		Asymp Tube I 6.1.1 6.1.2 6.1.3	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem	211 211 213
6		Asymj Tube I 6.1.1 6.1.2	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem	211 211 213 216
6	6.1	Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators	211 211 213 216
6		Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in	211 211 213 216 218
6	6.1	Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymj Varyin	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in g Strongly Perforated Domains	211 211 213 216 218 220
6	6.1	Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymj Varyin 6.2.1	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in ng Strongly Perforated Domains Problem Formulation and Main Result	 211 211 213 216 218 220 220 220
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2	ptotic Behavior of Solutions of Nonstationary Problems in DomainsConvergence of Spectral ProjectionsThe Dirichlet Initial Boundary Value ProblemThe Neumann Initial Boundary Value ProblemThe Neumann Initial Boundary Value Problem in Domains with Accumulatorswith Accumulatorsptotic Behavior of Solutions of Dirichlet Problems in ag Strongly Perforated DomainsProblem Formulation and Main ResultEstimates for Derivatives of $u^{(s)}(x, t)$	211 211 213 216 218 220 220 222
6	6.1	Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymj Varyin 6.2.1 6.2.2 6.2.3	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in ag Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$	211 211 213 216 218 220 220 222
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp	ptotic Behavior of Solutions of Nonstationary Problems in Domains Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in the Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$ ptotic Behavior of Eigenvalues of Boundary Value Problems	211 211 213 216 218 220 220 220 222 226
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Street	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in ng Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$ ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains	211 211 213 216 218 220 220 222 226 228
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Stree 6.3.1	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in g Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$ ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains	211 213 216 218 220 220 222 226 228 228
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Stree 6.3.1 6.3.2	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in the Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$ ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains	2111 213 216 218 220 220 222 226 228 228 228 228 228 233
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Stree 6.3.1	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in g Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$ ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains	2111 213 216 218 220 220 222 226 228 228 228 228 228 233
6	6.16.26.3	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Stree 6.3.1 6.3.2 6.3.3	ptotic Behavior of Solutions of Nonstationary Problems in Domains	2111 213 216 218 220 220 222 226 228 228 228 228 233 234
	6.16.26.3Diff	Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymj Varyin 6.2.1 6.2.2 6.2.3 Asymj in Stro 6.3.1 6.3.2 6.3.3 erential	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections	2111 213 216 218 220 220 222 226 228 228 228 228 233 234
6	6.1	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Stree 6.3.1 6.3.2	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections The Dirichlet Initial Boundary Value Problem The Neumann Initial Boundary Value Problem The Neumann Initial Boundary Value Problem in Domains with Accumulators ptotic Behavior of Solutions of Dirichlet Problems in the Strongly Perforated Domains Problem Formulation and Main Result Estimates for Derivatives of $u^{(s)}(x, t)$ ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains ptotic Behavior of Eigenvalues of Boundary Value Problems ongly Perforated Domains Strongly Connected Domains	2111 213 216 218 220 220 222 226 228 228 228 228 228 233
	6.16.26.3Diff	Asymj Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymj Varyin 6.2.1 6.2.2 6.2.3 Asymj in Stro 6.3.1 6.3.2 6.3.3 erential	ptotic Behavior of Solutions of Nonstationary Problems in Convergence of Spectral Projections	2111 213 216 218 220 220 222 226 228 228 228 228 233 234
	6.16.26.3	Asymp Tube I 6.1.1 6.1.2 6.1.3 6.1.4 Asymp Varyin 6.2.1 6.2.2 6.2.3 Asymp in Stree 6.3.1 6.3.2 6.3.3 erential Asymp	ptotic Behavior of Solutions of Nonstationary Problems in Domains	2111 213 216 218 220 220 222 226 228 233 234 237

xii Contents

		7.1.1	Problem Formulation and Main Theorem	239
		7.1.2	Auxiliary Statements and Constructions	244
		7.1.3	A Stationary Version of Theorem 7.1	262
		7.1.4	Completion of the Proof of Theorem 7.1	268
	7.2	Examp	bles of Particular Realizations of the Homogenized Diffusion	
			· · • • • • • • • • • • • • • • • • • •	272
		7.2.1	One-Phase Model with Memory	
		7.2.2	Homogenized Diffusion Model for Media with Traps	276
		7.2.3	Two-Component Models	
		7.2.4	A Probabilistic Problem	283
	7.3	Asym	ptotic Behavior of Solutions of Differential Equations with	
		Coeffic	cients That Are Not Uniformly Bounded	287
		7.3.1	Stationary Problem: Main Theorem	287
		7.3.2	Auxiliary Statements	291
		7.3.3	Proof of Theorem 7.13	302
		7.3.4	Nonstationary Problems	307
	7.4	An Ex	ample of a Nonlocal Homogenized Model	309
	7.5	Homo	genized Heat Conduction Model for a Medium Containing	
		Inclusi	ions with High Heat Capacity	312
		7.5.1	Problem Statement and Main Result	312
		7.5.2	A Stationary Problem	314
		7.5.3	Proof of Theorem 7.21	322
		7.5.4	Fine-Grained Periodic Inclusions	327
8	Uom	ogoniz	ed Conjugation Conditions	222
0	H 011 8.1	The D	irichlet Problem: Surface Distribution of Sets $F^{(s)}$	222
	0.1	8.1.1	Problem Formulation and Main Result	
		8.1.1	A Preparatory Lemma	
		8.1.2	Main Part of the Proof of Theorem 8.1	
	8.2		eumann Problem: Surface Distribution of Inclusions	
	0.2	8.2.1	Problem Formulation and Main Result	
		8.2.1	A Preparatory Lemma	
		8.2.2	Main Part of the Proof of Theorem 8.7	
	8.3		tion of Elastic Plates	
	0.3	8.3.1	Rigidly Fixed Plates	
		8.3.2	Free Plate	
	8.4		genized Conjugation Conditions for the Ginzburg–Landau	570
	0.4		ion; Stationary Josephson Effect	277
		8.4.1	Weakly Connected Conductors	
		8.4.1 8.4.2		
			Convergence Theorem	
		8.4.3	Stationary Josephson Effect	384
Ref	erenc	es		. 387
Ind	ex			. 397

Homogenization of Partial Differential Equations

Introduction

In contrast to the majority of available monographs on homogenization theory dealing with media of relatively simple microstructure (such as periodic, or close to periodic, structures depending on a single small parameter), in this book we study phenomena in media of arbitrary microstructure characterized by several small parameters (or even more complicated media). For such media, homogenized models of physical processes may have various forms differing substantially from an original model. In order to give some ideas about the possible types of models and the topology of microstructure of the corresponding media, in this introduction we consider typical examples of microstructures leading, in the limit, to particular homogenized models. To be specific, we consider a nonstationary heat conduction process (a nonstationary diffusion), described by the heat equation, in microinhomogeneous media of various types.

In the main part of the book (Chapters 2–8), we will consider problems in the general setting and present necessary and sufficient conditions for the convergence of solutions of the original problems to solutions of the corresponding homogenized equations. These condition are formulated in terms of local "mean" characteristics of the microstructure ("mesocharacteristics"), which are then used to express the coefficients of the limiting equations. These characteristics are introduced in cubes ("mesocubes"), which are small relative to the whole domain but at the same time are large relative to the microscale. Since we define the mesocharacteristics following the penalty method and therefore they may seem to be introduced somewhat artificially, we present in this introduction a certain motivation for our approach. Here we also discuss, without proofs, the basic notions needed for the characterization of general microstructures such as the notions of *strongly connected domains* and *weakly connected domains*.

1.1 The Simplest Homogenized Model

We begin with the study of a two-phase medium consisting of a bulk homogeneous material in which small grains (inclusions) of another homogeneous material are embedded. More precisely, let Ω and G be bounded domains in the *n*-dimensional space \mathbb{R}^n $(n \ge 2)$ with smooth boundaries $\partial\Omega$ and ∂G , respectively, \overline{G} (the closure of G) lying in the parallelogram $\Pi = \left\{x \in \mathbb{R}^n : |x_i| < \frac{h_i}{2}\right\}$. Construct the disjoint domains

$$G_{j\varepsilon} = \varepsilon G + \varepsilon \sum_{k=1}^{n} h_k m_{jk} e^k, \quad j = 1, 2, \dots,$$
(1.1)

arranged periodically in \mathbb{R}^n ; here m_{jk} are entire numbers, $\{e^k\}_{k=1}^n$ is an orthonormal basis in \mathbb{R}^n , and $\varepsilon > 0$ is a small parameter.

Assume that the bulk material occupies the domain $\Omega_{0\varepsilon} = \Omega \setminus \bigcup_j \overline{G}_{j\varepsilon}$, whereas the inclusions occupy the domain $\Omega_{1\varepsilon} = \bigcup_j G_{j\varepsilon}$, where the union is taken over a finite number of domains $G_{j\varepsilon}$ lying entirely in Ω , i.e., $\overline{G}_{j\varepsilon} \subset \Omega$ for $j = 1, 2, \ldots, N(\varepsilon) < \infty$; see Figure 1.1.

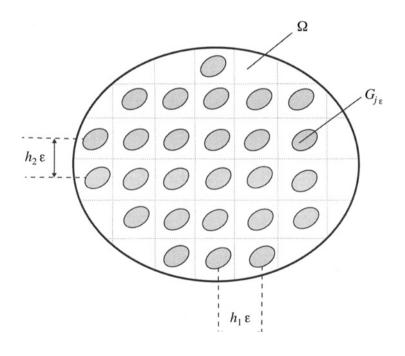


Fig. 1.1.

Denote by a_k and b_k (k = 0, 1) the heat conductivity and heat capacity, respectively, of the bulk material (k = 0) and the inclusions (k = 1), i.e., the local characteristics of the phases.

A nonstationary heat conduction process in such a medium can be described by the temperature function $u^{\varepsilon}(x, t)$ ($x \in \Omega, t > 0$), which, assuming that there are no